
1

Introduction to the
Workshop on Continuous Integration

for High Performance Computing

By Edward Smith

 10th November 2017

2

Plan for the Day

http://bit.ly/2zs189i

Session
start

Title Speaker

09:45:00 Coffee and Registration

10:00:00 Introduction and plan for the day, Summary of
Suggestions from sign-up form

Edward Smith

10:10:00 HPC and CI at Imperial Spencer Sherwin

10:30:00 Challenges to Testing on HPC from my work on CPL
library

Edward Smith

10:40:00 The SESC Build Service - CI for the UK computational
science community

Steven Lamerton

11:00 Results of the STFC CI survey Catherine Jones

11:20 Panel Guided Discussion -- what would be useful in a
central service?

All above

3

Plan for the Day

11:50 Lunch

12:50 Continuous Integration of Nektar++ with Buildbot Chris Cantwell

13:10 HPC-CI infrastructure at Cambridge Jeffrey Salmond

13:30 Brainstorming on the pros and cons of Travis,
Buildbot, Jenkins, CircleCI, etc for HPC

All

14:00 Catering -- Coffee, Tea and Biscuits

14:15 Continuous Integration for DL_POLY_4 Alin Elena

14:30 Overview of RSE and CI on HPC at UCL. David Perez-Suarez

14:50 Break off with group discussion session on key
problems

All

15:50 Discussion of outcome summary document and
close

Edward Smith

http://bit.ly/2zs189i

4

Scope

● Continuous integration for scientific software
– High performance code

– Minimal automated or unit testing

– Acceleration: MPI, OpenMP, CUDA, etc
● Deployment on HPC including:

1) Best ways to automate building within the
module environment

● Use existing or build from source
● Consider software and hardware changes

5

Scope

2) HPC specific problems for testing, which includes:
a)Initialisation through job submission scripts (Hook

to github like Travis or a GUI interface like Jenkins)
b)Scaling (Unique HPC problem and efficiency

bottlenecks to prevent wasted resources)
c)Jobs tested over varying numbers of processor

(bytewise comparison needed/possible?)
d)Frequency of tests (github commit or user

triggered?)

e)Location/queue for tests (Optimal use of resources
is essential).

6

Aims/Outcome for Today

● An identification of the HPC and CI community.
● Discussion of best way to proceed by sharing experience
● This is split into

1) For RSEs, how to implement this in the best way

2) Getting users to start CI on HPC (e.g. can we make
it as simple as using a Travis style .yml file)

● Produce a two page report to be shared on the SSI and
RSE network on insights.

● Perhaps a move towards adoption of a similar approach
across platforms and RSE groups.

7

Suggestions

● Project specific requirements vs national
centralised facilities

● Best strategies for parallel and distributed
software testing.

● Tutorials on CI frameworks (eg Travis)
● Development of a suitably flexible CI system

managed within the College.
● CI deployments on the Cloud vs locally -

Documentation of processes in different teams

8

Suggestions

● I'm interesting in attending in order to gather
research support requirements that I can feed
back to IC ICT

● I think talks should be limited and short. There
is a lot to consider in this area, and it would be
good to break up into "working groups" to
discuss and present conclusions.

● Further suggestions:
– http://bit.ly/2hg6NEM

9

Work Group Discussions

● In the afternoon we have an hour for
discussions

– Please check the google document to see
existing ideas

– Add your own suggestions to the google
docs or tweak what is there

– Flexibility in how we use this time

10

Pros and Cons of CI frameworks

● In the afternoon we plan to brainstorm and
identify the best CI for HPC

– Pros and cons with emphesis on the
particular challenges for HPC

– Please think about this for the frameworks
you've used, especially if you have
worked with more than one

– Would we consider writing our own?

11

Which Continous Integration frameworks

● Others include:
– gitlab framework
– kde framework (jenkins+customization)
– Appveyor
– Bamboo
– circleci

12

Sponsors for Today

● Room supplied by

● Funding for food and travel from

17

 Challenges to Testing on HPC from
my work on CPL library

By Edward Smith

 10th November 2017

Overview

I will outline my experience, including:
• Issues with building parallel codes

– Cross platform Desktop, ARCHER, Imperial HPC
and BP supercomputer in Texas

– Cross language(C++, Fortran and Python)
– Cross codebase - linking existing/evolving codes

• Issues with testing parallel code
– Spawning parallel runs
– Unit tests with parallel SetUp/TearDown
– Ensuring parallel corner cases are tested
– How to be sure test are meaningful?

CPL Library

• We are coupling two separate codes to run together
• Computational Fluid Dynamics
• Molecular Dynamics or Discrete Element Method

• Build codes separately and exchange all information
as average fields through shared library (CPL library)

• This is good because it:
• Allows separate testing of both codes
• Maintains scope of both codes
• Promotes optimal scaling

Domain Decomposition (MD near wall, CFD for remaining domain)

With David Trevelyan, Lucian Anton, Eduardo Ramos-
Fernadez, David Heyes and Daniele Dini

Molecular Dynamics and Computational Fluid Dynamics

21

 Granular Mechanics and Computational Fluid Dynamics

● Discrete element method fully overlapping with CFD code with two
way coupling through particle drag forces

With Catherine O'Sullivan

CPL Library - A Tale of Two Grids

CPL_init(COMM, realm)

CPL_setup(cells, domain,
 proc_topology)

CPL_send(U, P) CPL_recv(U, P)

libcpl.so

CPL_send(Fsum,e)CPL_recv(Fsum,e)

CPL library

 mpiexec -n 4 ./cfd.exe : –n 48 ./dem.exe Two codes sharing a communicator

Any CFD Any MD/DEM

23

Unit testing CPL Library - Verification

Testing the basic units of code
– Tools to apply drag to particles, CFD

boundary conditions, etc (All work in
serial)

– Basic use of CPL_init, CPL_setup,
CPL_send and CPL_recv

– Tested over a range of processor
topologies

25

Unit testing CPL Library - Verification

•We test parallel case on a range of different processor topologies
– pytest parameterize to create all possibilities

– Serial code uses subprocess (i.e. python starting another
program) to create possible MPI runs with mpiexec

26

Testing the Examples

Examples are automatically stripped for website
HTML and included as part of the CI testing

27

Continuous Integrated Testing

● We use Travis CI as it runs automatically with
github. If your latest change breaks the test, you will
get an email

● A free service for open source projects

● Actually works quite well with MPI and parallel
codes scaled up to 64 processors

● Based on Ubuntu 12.04 (newer libc than ARCHER!)

● Opaque technology with no way to test and develop
locally – need to commit to trigger test

28

Continuous Integrated Testing

● Travis CI
http://travis-ci.org/Crompulence/cpl-library
os: linux
sudo: required
language: python
python:
 - 2.7
env:
 - MPI=mpich3 GCC_VERSION=5
before_install:
 - sh ./make/travis/travis-install-gcc.sh
 ...
 - export MPI_DIR=$MPI_BUILD_DIR/$MPI
install:
 - export PATH=$MPI_DIR/bin:$PATH
 - make
script:
 - make test-all

Summary of Build Problems

• To run these tests on HPC
– Shared library must be compiled with same

version of MPI as two coupled codes
– Differences in compiler for each linked code can

cause problems
– Loading module version is unreliable and we

often have to patch the source code anyway
(solution with MPI_port not supported on Cray)

– Rebuilding both linked codes is often prohibitivly
slow (e.g. OpenFOAM takes 8+ hours)

– Problems getting Pytest setup on HPC

Deployment Through Anaconda

• A package manager used mainly for scientific computing
and Python

• Coupled OpenFOAM /LAMMPS setup with a single
script in minutes (vs. 8+ hrs to build from source)

• Packaged on virtual machine for compatibility with linux
on all platforms: ARCHER, CX1, CX2 and BP's
supercomputer in Texas

• Want to use these on HPC to for unit tests, scaling test
and to check the physics is working correctly on varying
topologies

• Container may be better?

This work is mainly by Eduardo Ramos-Fernandez

Summary of Test Problems

• Tesing multiple processors requires separate
processor topologies to be spawned (we cannot start
varying MPI jobs in a test framework)

• More complex under PBS, best way to do this?
• Scaling and efficiency are an important part of the CI

testing, regression tests or against a benchmark
• Not always clear what should be tested: bytewise

processor checks or regression? Physical laws?
Input/Output on HPC systems (with efficiency)

A Workshop to Discuss CI Tesing on HPC

• Such complex integration of code on HPC will only be
possible using modern programming practices

• If we don't automate testing, it doesn't get run!
• Some HPC Continous Integration in various places, e.g.

Cambridge, MET office & starting on ARCHER.
• Questions:

– How to address the unique problems of CI on HPC?

– Can (or should) we make this as simple for users as
setting up a .travis.yml file?

– Better to help academics set this up themselves?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 17
	Slide 18
	Summary
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 32
	Deployment Through Anaconda
	Slide 37
	Slide 38

