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Outline 
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Introduction 
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● Assumed Continuous at every point in space 

● Mass Conservation 

 

 

 

● Momentum Balance (Newton’s Law) 

 

 

 

● Energy Conservation 

Continuum vs. Discrete 
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Direct Numerical Simulation of 

Turbulent Couette Flow 



Continuum vs. Discrete 
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● Discrete Molecules in continuous space 

● Governed by Newton’s Law for an                                 

N-body system 

● Point particles with pairwise interactions 

 

 

 

 

● How do we obtain equivalent 

descriptions? 

● Both modelled by Newtonian mechanics 

● Linking the discrete and continuous forms 

Molecular Dynamics Simulation of 

Couette Flow  



Irving and Kirkwood (1950) 
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● In a molecular simulation     is never exactly 

equal to   

● Other difficulties with the Dirac delta function 

 

● Relaxed weighting functions 

● By Hardy(1981), Hoover (2009),    

Murdoch (2010) and others 

● The Dirac delta selects molecules at a point  

● Infinitely high, infinitely thin peak 

● Equivalent to the continuum differential  

formulation at a point 

Selecting Functions 



The Molecular Control Volume 
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● The Control volume function is the integral of the Dirac delta 

function in 3 dimensions 

 

Control Volume Function 
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For full details, please see 

E.R. Smith, D.M. Heyes, D. Dini, T.A. Zaki, 

Phys. Rev. E 85. 056705 (2012) 



● Taking the Derivative of the CV function 

 

 

 

 

● Surface fluxes over the top and               

bottom surface 

 

 

● Vector form defines six surfaces 

 

 

Derivatives yields the Surface Fluxes 
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● Molecular mass in a control volume 

 

 

 

● Mathematical manipulation yields surface fluxes 

 

 

 

 

 

 

Applying the Control Volume Function 
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● Mass, momentum and energy equations 

● Mass Conservation 

 

 

● Momentum Balance 

 

 

 

 

● Energy Conservation 

 

 Reynolds’ Transport Theorem 
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● Mass, momentum and energy equations 

● Mass Conservation 

 

 

● Momentum Balance 

 

 

 

 

● Energy Conservation 

 

 Reynolds’ Transport Theorem 

● The difference between two control volume 

functions for i and j 

 

 

● This is the IK operator for a CV 
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Testing Momentum Balance 

Accumulation Advection Forcing 

● Momentum Balance 
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Applications 
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The Pressure Tensor 

● Control Volume equations in terms of the pressure tensor 

● Molecular surface pressure over all 6 surfaces 



Unsteady Couette Flow 
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● Simulation setup 

● Starting Couette flow 

● Tethered wall molecules 

● Wall thermostat:  Nosé-Hoover 

● Averages are computed over 1000 

time steps and 8 realizations 



Unsteady Couette Flow 
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Unsteady Couette Flow 
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Unsteady Couette Flow 

20 

● Simulation setup 

● Starting Couette flow 

● Tethered wall molecules 

● Wall thermostat:  Nosé-Hoover 

● Averages are computed over 1000 

time steps and 8 realizations 



Control Volume Coupling 

x 

y 

z 

● Molecular 

Equations 

● Continuum 

Equations 21 
 
O’Connell and Thompson, (1995). 
 

Gauss Principle of 

Least Constraint with 



● Reformulated the Irving and Kirkwood (1950) equations in 

terms of a control volume 

● Compared to the continuum Control Volume equations – not pointwise 

so the Dirac delta function is replaced by  the CV function 

● The CV function is mathematically and computational well defined and 

applicable to any discrete system 

● Derivation of discrete CV equations 

● Not an approximation of the Dirac delta but an integration over a volume 

● Exactly conservative equations derived for mass, momentum and energy 

● Applications 

● Provides insight into the pressure tensors and link them to time evolution 

● Arbitrary CV shapes and exact conservation can be exploited 

● Can be used in the derivation of localised constraint algorithms using 

minimisation principles (e.g. Gauss’ Least Constraint) 

 

Summary 
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Thank you for listening 

Any Questions? 
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Extra Material 
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Advection 

Forcing 

Testing Momentum Balance 

● Momentum Balance 
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Advection Forcing 

Testing Momentum Balance 

● Momentum Balance 
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Testing Momentum Balance 

Accumulation Advection Forcing 

● Momentum Balance 
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● The Control volume function is the integral of the Dirac delta 

function in 3 dimensions 

 

 

 

 

 

 

● Replace molecular position with             

equation for a line 

 

 

 

 

 

 

 

 

 

 

Control Volume Function (revisited) 
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For full details, please see 

E.R. Smith, D.M. Heyes, D. Dini, T.A. Zaki, Phys. Rev. E 85. 056705 (2012) 



● The Control volume function is the integral of the Dirac delta 

function in 3 dimensions 

 

 

 

 

 

 

● Length of interaction inside the CV 

 

 

 

 

Control Volume Function (revisited) 
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● Taking the Derivative of the CV function 

 

 

 

 

 

● Surface fluxes over the top and               

bottom surface 

 

 

Derivatives Yield the Surface Forces 
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● Extensive literature on the form of the molecular stress tensor 

● No unique solution Schofield, Henderson (1988) 

● Two key forms in common use – Volume Average (Lutsko, 1988) and Method of 

Planes (Todd et al 1995) 

● Link provided between these descriptions 

● Through formal manipulation of the functions 

● Exposes the relationship between the molecular stresses    

 and the evolution of momentum 

● In the limit the Dirac delta form of               

Irving and Kirkwood (1950) is obtained 

● This suggests the same limit is not  possible in    

 the molecular system 

● Arbitrary stress based on the volume of interest 

More on the Pressure Tensor 
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● Why the continuum form of Reynolds’ transport theorem has a 

partial derivative but the discrete is a full derivative 

● Eulerian mass conservation 

 

 

 

 

● Lagrangian mass conservation 

Moving reference frame 
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Continuum Analytical Couette Flow 

t= 10
33 



Unsteady Couette Flow 
● Molecular Dynamics ● Continuum Analytical 

● Simplify the momentum balance 

(Navier-Stokes) equation 

 

 

 

● Solve the 1D unsteady diffusion 

equation. 

 

 

● With Boundary Conditions 

 

● Fixed bottom wall, sliding top wall 

with both thermostatted 

34 



Unsteady Couette Flow 
● Molecular Dynamics 

● Discrete form of the Momentum 

balance equation 

 

 

 

 

● Simplifies for a single control volume 

 

 

● Fixed bottom wall, sliding top wall 

with both thermostatted 

● Continuum Analytical 

● Simplify the control volume 

momentum balance equation 

 

 

 

 

● Simplifies for a single control volume 

 

 

● With Boundary Conditions 
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Unsteady Couette Flow 

● Simulation setup 

● Starting Couette flow 

● Wall thermostat:  Nosé-Hoover 

● Averages are computed over 1000 

time steps and 8 realizations 
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● Use of the momentum conservation of the control volume to 

determine the drag coefficient 

 

 

 

 

 

● Drag over a Carbon Nano-tube can be determined 

Flow past a cylinder 
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Shockwaves 

● Current work on application of control volume theory 

 

 

● Paper by Root et al (2003) suggests micro-scale turbulence 

following the shock wave 
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Constrained dynamics for coupling 
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Control Volume Coupling 
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● We want to apply a constraint of the form 

● Control Volume momentum in both domains fixed to the same value 

 

 

 

 

● The molecular Control Volume is given by 
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Constrained Control Volume 
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● We want to apply a constraint of the form 

● Control Volume momentum in both domains fixed to the same value 

 

 

 

● Several methods for doing this 

● Principle of Least Action (subject to constraint) 

 

 

● Gauss’ Principle of Least Action 

 

 

● Extra terms in the Hamiltonian? 

 

Constrained Control Volume 
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● If the constraint is semi-holonomic, i.e. 

● The constraint ‘g’ can be integrated 

● Alternatively/equivalently the constraint satisfies the condition (Flannery 2004) 

 

 

 

● The result is the Euler-Lagrange equation is applicable in the 

form 

● Lagrangian in constrained form 

● Resulting equation is equivalent to the one obtained from Gauss’ principle 

 

 

 

Principle of least action 
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● Can be written in terms of the peculiar momentum 

 

 

 

● To give equations in the form 

Resulting equations 
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● Differentiating q dot and inserting into the other 

 

 

 

 

 

● Give the following equation – equivalent to one obtained by 

Gauss principle of Least constraint 

Combining the equations 
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● Is energy conserved by this semi-holonomic constraint? How 

can we prove this? 

● This is a differential constraint – it doesn’t seem to work in 

practice. Is this a mistake? 

 

● Should we instead try to constrain the mass? 

 

● Localisation of SLLOD possible? 

 

● Nose Hoover style constraint possible – is this preferable? 

 

 

Questions 


