
A Front-tracking/Finite-Volume Navier-Stokes

Solver for Direct Numerical Simulations of

Multiphase Flows

Grétar Tryggvason

October 19, 2012

2

Contents

1 Introduction 5
1.1 Computations . 6
1.2 Problem Specification . 6
1.3 Governing Equations . 7
1.4 Layout of the rest of the tutorial 9

2 Simple Flow Solver 11
2.1 Governing Equations . 11
2.2 Integration in Time . 11
2.3 Spatial Discretization . 12

2.3.1 Discretization of the advection terms 16
2.3.2 Discretization of the diffusion terms 17

2.4 The Pressure Equation . 18
2.5 The Computational Domain . 20
2.6 Boundary Conditions . 20
2.7 Numerical Algorithm . 21
2.8 Advecting the Density: Centered Differences with Diffusion . . . 22
2.9 Numerical Code (MATLAB) . 23
2.10 Results . 23
2.11 Exercises . 23

3 2D Front Tracking 29
3.1 Moving the front . 30
3.2 Constructing the density field . 32
3.3 Restructuring the front . 35
3.4 Numerical Code (MATLAB) . 36
3.5 Results . 36
3.6 Exercises . 36

4 A More Complete Code 41
4.1 Surface Tension . 41
4.2 Different Viscosities . 42
4.3 Second Order in Time . 43
4.4 Keeping Flows in Periodic Domains Stationary 44

3

4 CONTENTS

4.5 More Complete Code . 44
4.6 Results . 44
4.7 Exercises . 46

5 More Advanced Code 51
5.1 Stretched Grids . 51

5.1.1 Advecting the Front . 55
5.1.2 Grid Generation . 56
5.1.3 Stretched Grid Code . 57
5.1.4 Results . 62

5.2 Advection by ENO . 63
5.3 Advecting the Front Across Periodic Boundaries 64

5.3.1 Stretched Grid plus ENO Code 64

Chapter 1

Introduction

Multiphase flows are everywhere and understanding them is important for pre-
dicting the behavior of natural and industrial processes. Examples from Nature
include rain and the gas and heat exchange between the atmosphere and the
ocean, sandstorms and sediments and various aspects of volcanic eruptions.
Boiling heat transfer and chemical processing in bubble columns are ubiquitous
in power and chemical plants, the combustion of liquid fuel essentially always
includes atomization and sprays are found in painting coating and cooling, irri-
gation, and a host of other applications.

Numerical simulations of fluid flows of increasing complexity are transform-
ing our understanding of such systems and how we examine their behavior. Di-
rect Numerical Simulations (DNS), where all continuum time and length scales
are fully resolved, have had a particularly important impact. Such simulations
have long been a standard tool for studies of turbulent single phase flows, but
for multiphase flows, where two or more immiscible fluids separated by a sharp
interface occupy the same domain, progress has been considerably slower. Nev-
ertheless, such simulations are gradually becoming more common.

The purpose of this tutorial is to help you, the reader, get started doing
direct numerical simulations (DNS) of multiphase flows. It is intended to be
read from the beginning to the end and is structured in such a way that a
computer code is introduced that gets more capable the further we go. This is
the way a numerical code is often written and will, hopefully, ensure significant
“ownership,” or at least understanding, of the final product. I hope that you
will find the tutorial easy to read and the concepts introduced relatively straight
forward. Commensurate with my believe that the topic is simple—and that it
is important to keep it as simple as possible—I have also tried to make the
computer codes as readable as possible and it is my intention that they be read,
just as the rest of the text.

This tutorial is not an introduction to either computations of multiphase
flows in general nor DNS in particular. For a general introduction the former,
the reader may want to consult

5

6 CHAPTER 1. INTRODUCTION

• A. Prosperetti and G. Tryggvason (editors and main contributors). Com-
putational Methods for Multiphase Flow. Cambridge University Press,
2007. Paperback edition 2009. Reviewed in: J. Fluid Mech. 603 (2008),
474-475; Int’l. J. Multiphase Flow 34 (2008), 1096-1097.

For a fairly detailed treatment of DNS of multiphase flows, including both
a description of numerical methods and a survey of results, we suggest

• G. Tryggvason, R. Scardovelli and S. Zaleski. Direct Numerical Simula-
tions of Gas-Liquid Multiphase Flows. Cambridge University Press, 2011.

1.1 Computations

Computations of multiphase flows go back to the origin of computational fluid
dynamics. The Marker and Cell (MAC) method developed at Los Alamos in
the early sixties was designed specifically for free-surface and multiphase flows
and used to simulate interfacial instabilities, gravity currents, waves and droplet
collisions with walls, and other problems. The MAC method was followed by
the Volume of Fluid (VOF) method, but although both methods produced im-
pressive solutions, both were relatively inaccurate. In the late eighties and early
nineties the development of other ideas, such as level sets and front-tracking
methods, as well as improved VOF methods, marks the beginning of accurate
and robust simulations of a variety of multiphase flows.

The majority of numerical methods currently used for detailed simulations of
multiphase flows are based on the so-called one-field (or one-fluid) formulations
of the Navier-Stokes equations, where one set of equations, describing the flow of
all the fluids involved. The equations are usually solved on a regular structured
grid, in most cases using a second order projection method where the solution is
first updated without accounting for the pressure, the pressure is found from the
divergence of the temporary solution, and the initial velocity is then corrected
by adding the gradient of the pressure. The main difference between the various
methods is how a marker function, identifying the different fluids, is updated.

1.2 Problem Specification

We will consider the unsteady motion of two or more incompressible and im-
miscible fluids where the location of the interface separating the different fluids
will change with time. In some cases one fluid is immersed in the other as a
disperse phase consisting of bubbles or drops but in other cases the interface is
more complex and it is difficult to identify the disperse phase. And in many
cases the phase layout undergoes topology changes where fluid masses coalesce
or break up. Figure 1.1 shows the general situation where a convoluted interface
separates two fluids but small bubbles or drops of either fluid can also be found
fully immersed in the other fluid. For simplicity we will focus our attention on

http://www.cambridge.org/gb/knowledge/isbn/item2704064/?site_locale=en_GB
http://www.cambridge.org/gb/knowledge/isbn/item2704064/?site_locale=en_GB
http://www.cambridge.org/gb/knowledge/isbn/item2714501/?site_locale=en_GB
http://www.cambridge.org/gb/knowledge/isbn/item2714501/?site_locale=en_GB

1.3. GOVERNING EQUATIONS 7

Figure 1.1: Multiphase flow. The different fluids can form a connected region
or be dispersed in the other fluid as bubbles and drops.

disperse flows, often using the motion of only one bubble or a drop as a test
case for our codes.

We generally define multiphase flows as two or more distinct phases or com-
ponents flowing together. Thus, air bubbles and oil drops in water as well as
vapor bubbles in liquids and fuel vapor and drops in sprays are multiphase flows.
We could speak of multifluid flows when the fluids involved are distinct materials
and reserve the multiphase to one fluid but different phases, but this is usually
not done. The presence of two or more chemical species is not sufficient. Air,
which is a mixture of several gases (such as oxygen, nitrogen, carbon-dioxide,
and others) is generally not considered to be a multiphase flow. Similarly, wa-
ter containing dissolved sugar or gases, is not multiphase flow. Here we will
not consider miscible fluids, although often, particularly for short times, their
evolution is very well described by standard approaches to describing multi-
phase flow. Often, multiphase flows are divided into Gas-liquid, Gas-solid and
Three-phase flows. This is, however, somewhat incomplete since liquid-liquid
(oil drops in water, for example) flows are often important and the difference
between gas-liquid and liquid-liquid is simply the ratio of their properties. We
shall thus simply distinguish between fluid-fluid and fluid-solid systems.

1.3 Governing Equations

The momentum equation for variable density and viscosity is:

ρ
∂u

∂t
+ ρ∇ · uu = −∇p+ ρg +∇ · µ(∇u +∇Tu) + f . (1.1)

8 CHAPTER 1. INTRODUCTION

Here, u is the velocity, p the pressure, ρ is the density, and µ is the viscosity. g
is the gravity acceleration and f is a body force other than gravity.

The density will generally change from one location to another, but we take
the density of each fluid particle to remain constant, as the fluid particle moves
with the flow. The density therefore changes according to

Dρ

Dt
=
∂ρ

∂t
+ u · ∇ρ = 0, (1.2)

where D()/Dt is the convective derivative. For this case the conservation of
mass equation for incompressible flow reduces to

∇ · u = 0, (1.3)

showing that volume is conserved. For the flow of two or more immiscible fluids,
where one fluid is separated from the other by a sharp interface, the density is
constant in each fluid, so that it can be reconstructed from the location of the
interface, instead of solving equation (1.2) directly. Thus, the fluid dynamics
problem consists of equations (1.1) and (1.3), with the understanding that the
density must also be updated in some way.

In component form the Navier-Stokes equations, (1.1), for two-dimensional
flows are:

ρ
(∂u
∂t

+
∂uu

∂x
+
∂uv

∂y

)
= −∂p

∂x
+ ρgx +

∂

∂x
2µ
∂u

∂x
+

∂

∂y
µ
(∂u
∂y

+
∂v

∂x

)
+ fx

ρ
(∂v
∂t

+
∂uv

∂x
+
∂vv

∂y

)
= −∂p

∂y
+ ρgy +

∂

∂x
µ
(∂u
∂y

+
∂v

∂x

)
+

∂

∂y
2µ
∂v

∂y
+ fy (1.4)

and the continuity equation (1.3) is:

∂u

∂x
+
∂v

∂y
= 0. (1.5)

The advection terms can be written in several ways and it is easy to show that
for incompressible flow:

ρ
(∂u
∂t

+∇ · uu
)

= ρ
(∂u
∂t

+ u · ∇u
)

=
∂ρu

∂t
+∇ · ρuu (1.6)

We will work mostly with the first form here.
It is also easily seen that for constant viscosity (µ = µ0) the viscous terms

can be written as:
∇ · µo(∇u +∇Tu) = µo∇2u. (1.7)

Or, for two-dimensional flow:

∂

∂x
2µ0

∂u

∂x
+

∂

∂y
µ0

(∂u
∂y

+
∂v

∂x

)
= µ0

(
∂2u

∂x2
+
∂2u

∂y2

)
∂

∂x
µ0

(∂u
∂y

+
∂v

∂x

)
+

∂

∂y
2µ0

∂v

∂y
= µ0

(
∂2v

∂x2
+
∂2v

∂y2

)
(1.8)

For a detailed discussion of the Navier-Stokes equations for multiphase flows,
see the book by Tryggvason, Scardovelli and Zaleski.

1.4. LAYOUT OF THE REST OF THE TUTORIAL 9

1.4 Layout of the rest of the tutorial

In the next chapter we develop a very simple code for multiphase flow simula-
tions, taking surface tension to be zero and the viscosities of both fluids to be
the same. The density is first advected by a simple upwind method to allow
us to present the fluid solver. Then we introduce front tracking to follow the
interface motion (Chapter 3). We next introduce second order time integration,
surface tension and viscosity that is different for the different fluids, in Chapter
4. This results in a relatively complete code that can be used to simulate a wide
range of problems. To extend the code still further we introduce stretched grids
and a better advection scheme in Chapter 5.

In the first few chapters we will write the codes in Matlab. Matlab is a
particularly easy to use environment for code development and will allow us
to write reasonably readable codes that are easily changed and experimented
with. For more serious computations it is better, however, to switch to fortran
or another advanced language.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Simple Flow Solver

We start by describing a very simple Navier-Stokes solver for variable density
flow. We will ignore surface tension, assume that the viscosities of both fluids are
the same and use a first order time integration. To solve the density advection
(equation 1.2), we will use a simple upwind method. By starting simple we
will ensure that we always have a working code and this approach will also,
hopefully, help the reader develop both an understanding of the code and good
programming habits.

2.1 Governing Equations

The momentum equation, when surface tension is neglected, there is no body
force except gravity, and the viscosity of both fluids is the same, is

ρ
∂u

∂t
+ ρ∇ · uu = −∇p+ ρg + µo∇2u. (2.1)

We denote the viscosity by µo to emphasize that it is the same in both fluids.
The conservation of mass equation for incompressible flow is unchanged and
given by 1.3, which we repeat here for completeness

∇ · u = 0 (2.2)

2.2 Integration in Time

To integrate these equations in time, we split the momentum equation (equation
2.1) by first computing the velocity field without considering the pressure

u∗ − un

∆t
= −An + g +

1

ρn
Dn (2.3)

and then adding the pressure

un+1 − u∗

∆t
= −∇hp

ρn
. (2.4)

11

12 CHAPTER 2. SIMPLE FLOW SOLVER

Here, the superscript n denotes a variable evaluated at the current time, t, and
n+1 stands for a variable at the end of the time step (time t+∆t), A is a discrete
approximation of the advection term, D is an approximation of the diffusion
term, the subscript ∇h denotes a discrete approximation of the gradient, and
u∗ is a temporary non-divergence-free velocity field. Adding equations (2.3)
and (2.4) gives a numerical approximation to equation (2.1), where the time
derivative has been approximated by a first order forward-in-time scheme.

The pressure must be determined in such a way that the final velocity field
is divergence free at the end of the time step and satisfies the discrete version
of equation (2.2):

∇h · un+1 = 0. (2.5)

By taking the divergence of (2.4) and using (2.5) to eliminate un+1, we get a
Poisson equation for the pressure:

∇h ·

(
1

ρn
∇hp

)
=

1

∆t
∇h · u∗. (2.6)

Once the pressure has been found, equation (2.4) can be used to find the pro-
jected velocity at time step n+ 1.

2.3 Spatial Discretization

To discretize the momentum equations, we use the Finite-Volume approach
where the conservation principles of mass and momentum are applied to a small
control volume, V . We define the average velocity in the control volume by:

u =
1

V

∫
V

u(x)dv. (2.7)

To find numerical approximations for the advection and the diffusion terms in
equation (2.3), we first define the average value over a control volume and then
write the volume integral as a surface integral using the divergence theorem:

A =
1

V

∫
V

∇ · uu dv =
1

V

∮
S

u(u · n)ds (2.8)

and

D =
µo
V

∫
V

∇2u dv =
µo
V

∫
V

∇ · ∇u dv =
µo
V

∮
S

∇u · n ds. (2.9)

The pressure term is approximated by the integral of the pressure gradient
over a control volume:

∇hp =
1

V

∫
∇p dv =

1

V

∮
S

pn ds. (2.10)

So far, we have left the shape of the control volume unspecified. In principle
we can use arbitrarily shaped control volumes but here we will work with struc-
tured Cartesian grids where the various variables are stored at points defined

2.3. SPATIAL DISCRETIZATION 13

fi, j fi+1, j

fi, j+1 fi+1, j+1

Figure 2.1: Regular structured grid

by the intersection of orthogonal grid lines. Figure 2.1 shows a sketch of such a
grid. Regular structured grids have many benefits, the chief among them being
that the connectivity of the grid points is implicit in the layout of the grid.
There is no need to explicitly specify how the grid points are connected since
the point to the right of point (i, j) is simply (i + 1, j) and so on. This results
in extremely efficient and relatively simple numerical codes. The orthogonality
of the grid lines usually also helps the accuracy.

For the numerical code we are developing here, we divide the computational
domain into rectangular equal sized control volumes. For incompressible flows,
experience shows that it is simplest to use one control volume for the pressure
and different control volumes for each of the velocity components. The mo-
tivation for doing so comes from considering the incompressibility conditions
(equation 2.5). Integrating equation (2.5) over a control volume and converting
the volume integral to a surface integral gives∫

V

∇ · udv =

∮
S

u · nds = 0. (2.11)

This shows that the inflow must be equal to the outflow. If the in- and outflow
does not balance, then the pressure in the control volume must be increased or
decreased to increase or decrease the flow in or out of the control volume.

Here we will take our control volumes to be aligned with the coordinate
axis, where the horizontal axis is the x-direction and the vertical axis is the
y-direction. The control volume for the pressure is shown in figure 2.2. In two-
dimensions, the volume (actually the area, but we will speak of a volume to
make the transition to three-dimensional flows easier) is given by V = ∆x∆y,
where ∆x and ∆y are the dimensions of the control volume in the x and y
direction, respectively.

Approximating equation (2.5) by integrating over the edges of the control
volume in figure 2.2, using the midpoint rule, yields:

∆y(un+1
i+1/2,j − u

n+1
i−1/2,j) + ∆x(vn+1

i,j+1/2 − v
n+1
i,j−1/2) = 0. (2.12)

14 CHAPTER 2. SIMPLE FLOW SOLVER

pi-1,j+1! pi,j+1! pi+1,j+1!

pi-1,j! pi,j! pi+1,j!

pi-1,j-1! pi,j-1! pi+1,j-1!

ui-1/2,j+1! ui+1/2,j+1!

ui-1/2,j! ui+1/2,j!

ui-1/2,j-1! ui+1/2,j-1!

vi-1,j+1/2!

vi-1,j-1/2!

vi,j+1/2!

vi,j-1/2!

vi+1,j+1/2!

vi+1,j-1/2!

!y

!x
x

y

Figure 2.2: The notation used for a standard staggered mesh. The pressure is
assumed to be known at the center of the control volume outlined by a thick
solid line.

Here it is clear that we need the horizontal velocity components (u) at the
vertical boundaries and the vertical velocity components (v) on the horizontal
boundaries. Thus, it is natural to define new control volumes for each compo-
nent, with the center of the control volume for the u-velocity component located
at the middle of the vertical boundary of the pressure control volume and the
control volume for the v-velocity component centered at the middle of the hor-
izontal boundary of the pressure control volume. We can think of those control
volumes as being displaced half a mesh to the right from the pressure node for
the horizontal velocity and displaced half a mesh upward for the vertical veloc-
ity (see figure 2.3). It is customary to identify the pressure nodes by the indices
(i, j) and to refer to the location of the u-velocity component by (i+1/2, j) and
the location of the v-velocity component by (i, j + 1/2). In an actual computer
code the grids are, of course, simply shifted and each component referenced by
an integer. This mesh is usually referred to as a staggered mesh or a grid. The
density and other material properties are usually stored at the pressure nodes.

Using the grid in figures 2.2 and 2.3 along with the notation introduced
above, the discrete approximations for the x and the y component of the pre-
dicted velocities (equation 2.3) are:

u∗i+1/2,j = uni+1/2,j + ∆t

{(
−Ax

)n
i+1/2,j

+ (gx)ni+1/2,j

+
1

1
2 (ρni+1,j + ρni,j)

(
Dx

)n
i+1/2,j

}
(2.13)

2.3. SPATIAL DISCRETIZATION 15

u-velocity!

pi-1,j+1! pi,j+1! pi+1,j+1!

pi-1,j! pi,j! pi+1,j!

pi-1,j-1! pi,j-1! pi+1,j-1!

ui-1/2,j+1! ui+1/2,j+1!

ui-1/2,j! ui+1/2,j!

ui-1/2,j-1! ui+1/2,j-1!

vi-1,j+1/2!

vi-1,j-1/2!

vi,j+1/2!

vi,j-1/2!

vi+1,j+1/2!

vi+1,j-1/2!

v-velocity!

pi-1,j+1! pi,j+1! pi+1,j+1!

pi-1,j! pi,j! pi+1,j!

pi-1,j-1! pi,j-1! pi+1,j-1!

ui-1/2,j+1! ui+1/2,j+1!

ui-1/2,j! ui+1/2,j!

ui-1/2,j-1! ui+1/2,j-1!

vi-1,j+1/2!

vi-1,j-1/2!

vi,j+1/2!

vi,j-1/2!

vi+1,j+1/2!

vi+1,j-1/2!

Figure 2.3: The notation used for a standard staggered mesh. The horizontal
velocity components (u) are stored at the middle of the left and right edges
of this control volume and the vertical velocity components (v) are stored at
middle of the top and bottom edges.

and

v∗i,j+1/2 = vni,j+1/2 + ∆t

{(
−Ay

)n
i,j+1/2

+ (gy)ni,j+1/2

+
1

1
2 (ρni,j+1 + ρni,j)

(Dy

)n
i,j+1/2

}
. (2.14)

The equations for the correction velocities (equation 2.4) are:

un+1
i+1/2,j = u∗i+1/2,j −

∆t
1
2 (ρni+1,j + ρni,j)

pi+1,j − pi,j
∆x

(2.15)

and

vn+1
i,j+1/2 = v∗i,j+1/2 −

∆t
1
2 (ρni,j+1 + ρni,j)

pi,j+1 − pi,j
∆y

. (2.16)

Some of the variables in these equations, such as the density, are needed at lo-
cations where they are not defined. For those values, we use linear interpolation
(by taking the average) so that

ρi+1/2,j =
1

2
(ρni+1,j + ρni,j), (2.17)

as so on. Assuming a linear variation also allows us to identify the value at the
center of the control volume with the average value.

16 CHAPTER 2. SIMPLE FLOW SOLVER

2.3.1 Discretization of the advection terms

For the advection terms (2.8), we first approximate the fluxes through each
boundary by the value at the center of the boundary:

(Ax)i+1/2,j =
1

∆x∆y

{[
(uu)i+1,j − (uu)i,j

]
∆y +[

(uv)i+1/2,j+1/2 − (uv)i+1/2,j−1/2

]
∆x
}

(2.18)

(Ay)i,j+1/2 =
1

∆x∆y

{[
(uv)i+1/2,j+1/2 − (uv)i−1/2,j+1/2

]
∆y +[

(vv)i,j+1 − (vv)i,j
]
∆x
}
. (2.19)

We will start by using centered differencing for all spatial variables. Other
alternatives can, of course, be used and those will be discussed later. In the
centered, second-order scheme, the velocities at the boundaries of the velocity
control volumes are found by linear interpolation and the momentum fluxes
computed using these interpolated values. The x-component at (i + 1/2, j) is
then

(Ax)
n
i+1/2,j =

1

∆x

[(uni+3/2,j + uni+1/2,j

2

)2
−
(uni+1/2,j + uni−1/2,j

2

)2]

+
1

∆y

[(uni+1/2,j+1 + uni+1/2,j

2

)(vni+1,j+1/2 + vni,j+1/2

2

)
−
(uni+1/2,j + uni+1/2,j−1

2

)(vni+1,j−1/2 + vni,j−1/2

2

)]
. (2.20)

The y-component, at the (i, j + 1/2) point, is:

(Ay)
n
i,j+1/2 =

1

∆x

[(uni+1/2,j + uni+1/2,j+1

2

)(vni,j+1/2 + vni+1,j+1/2

2

)
−
(uni−1/2,j+1 + uni−1/2,j

2

)(vni,j+1/2 + vni−1,j+1/2

2

)]

+
1

∆y

[(vni,j+3/2 + vni,j+1/2

2

)2
−
(vni,j+1/2 + vni,j−1/2

2

)2]
. (2.21)

The centered second-order scheme is more accurate than any non-centered
second-order scheme and usually gives the best results for fully resolved flows. It
has, however, two serious shortcomings. The first problem is that for flows that
are not fully resolved it can produce unphysical oscillations that can degrade
the quality of the results. The second problem is that the centered second-order

2.3. SPATIAL DISCRETIZATION 17

scheme is unconditionally unstable for inviscid flows when used in combination
with the explicit forward-in-time integration given by equations (2.3) and (2.4).
It is only the addition of the viscosity terms that makes the scheme stable and if
the viscosity is small, the time-step must be small. At high Reynolds numbers
this usually results in excessively small time steps.

2.3.2 Discretization of the diffusion terms

Approximating the integral of the viscous fluxes around the boundaries of the
velocity control volumes (equation 2.9) by the value at the midpoint of each
edge times the length of the edge results in:

(Dx)
n
i+1/2,j =

µo
∆x∆y

{((∂u
∂x

)
i+1,j

−
(∂u
∂x

)
i,j

)
∆y

+

((∂u
∂y

)
i+1/2,j+1/2

−
(∂u
∂y

)
i+1/2,j−1/2

)
∆x

}
(2.22)

and

(Dy)
n
i,j+1/2 =

µo
∆x∆y

{((∂v
∂x

)
i+1/2,j+1/2

− µ
(∂v
∂x

)
i−1/2,j+1/2

)
∆y

+

((∂v
∂y

)
i,j+1

−
(∂v
∂y

)
i,j

)
∆x

}
. (2.23)

The velocity derivatives are found using the standard second-order centered
differences, resulting in:

(Dx)
n
i+1/2,j = µo

{(uni+3/2,j − 2uni+1/2,j + uni−1/2,j

∆x2

)
+
(uni+1/2,j+1 − 2uni+1/2,j + uni+1/2,j−1

∆y2

}
(2.24)

and

(Dy)
n
i,j+1/2 = µo

{(vni+1,j+1/2 − 2vni,j+1/2 + vni−1,j+1/2

∆x2

)
+
(vni,j+3/2 − 2vni,j+1/2 + vni,j−1/2

∆y2

)}
. (2.25)

It is worth emphasizing again that this relatively simple form of the viscous
terms only holds for the special cases of two incompressible fluids with the same
viscosities. For the more general case, where the different fluids have different
viscosities, the full deformation tensor must be used, resulting in more complex
forms. This will be done in Chapter 4.

18 CHAPTER 2. SIMPLE FLOW SOLVER

2.4 The Pressure Equation

The pressure equation is derived by substituting the expression for the cor-
rected velocity, equations (2.15) and (2.16), into the discrete mass conservation
equation (2.12). The result is:

1

∆x2

(
pi+1,j − pi,j
ρni+1,j + ρni,j

− pi,j − pi−1,j

ρni,j + ρni−1,j

)
+

1

∆y2

(
pi,j+1 − pi,j
ρni,j+1 + ρni,j

− pi,j − pi,j−1

ρni,j + ρni,j−1

)

=
1

2∆t

(u∗i+1/2,j − u
∗
i−1/2,j

∆x
+
v∗i,j+1/2 − v

∗
i,j−1/2

∆y

)
. (2.26)

Solving the pressure equation is usually the most expensive part of any
simulation of incompressible flows and usually it is necessary to use advanced
pressure solver to achieve reasonable computational times. Here, however, we
will use a simple Successive Over Relaxation (SOR) method. To do so, we
rearrange equation (2.26) and isolate pi,j on the left hand side. The pressure is
then updated iteratively by substituting for pressure values on the right-hand
side the approximate values pαi,j of the pressure from the previous iteration. In
the SOR method we also take a weighted average of the updated value and the
pressure pαi,j from the last iteration to compute the new approximation pα+1

i,j :

pα+1
i,j =

β

[
1

∆x2

(1

ρni+1,j + ρni,j
+

1

ρni,j + ρni−1,j

)
+

1

∆y2

(1

ρni,j+1 + ρni,j
+

1

ρni,j + ρni,j−1

)]−1

[
1

∆x2

(pαi+1,j

ρni+1,j + ρni,j
+

pα+1
i−1,j

ρni,j + ρni−1,j

)
+

1

∆y2

(pαi,j+1

ρni,j+1 + ρni,j
+

pα+1
i,j−1

ρni,j + ρni,j−1

)
− 1

2∆t

(u∗i+1/2,j − u
∗
i−1/2,j

∆x
+
v∗i,j+1/2 − v

∗
i,j−1/2

∆y

)]
+ (1− β)pαi,j .

(2.27)

Here, we assume that the iteration is done by sweeping over the rows and
columns so that when we update grid point (i, j), the value of p at grid points
(i− 1, j) and (i, j − 1) have already been updated. β is a relaxation parameter
and for over-relaxation we must have β > 1. For stability reasons we must
also have β < 2. Taking β = 1.2 − 1.5 is usually a good compromise between
stability and accelerated convergence. To assess how well the iteration has con-
verged, we monitor the maximum difference between the pressure at successive
iterations and stop, once this difference is small enough. A more sophisticated
approach would be to monitor the residual, that is the difference between the
left and the right hand side of equation (2.26), but this generally requires extra
computational effort. While the SOR method works well for our purpose, for
serious computations more advanced pressure solvers are generally used.

2.4. THE PRESSURE EQUATION 19

pi,j+1! pi+1,j+1! pnx+1,j+1! pnx+2,j+1!pi-1,j+1!p2,j+1!p1,j+1!

pi,j! pi+1,j! pnx+1,j! pnx+2,j!pi-1,j!p2,j!p1,j!

pi,j-1! pi+1,j-1! pnx+1,j-1! pnx+2,j-1!pi-1,j-1!p2,j-1!p1,j-1!

pi,2! pi+1,2! pnx+1,2! pnx+2,2!pi-1,2!p2,2!p1,2!

pi,1! pi+1,1! pnx+1,1! pnx+2.1!pi-1,1!p2,1!p1,1!

vi,j!

vi,j-1! vi+1,j-1! vnx+1,j-1! vnx+2,j-1!vi-1,j-1!v2,j-1!v1,j-1!

vi,2! vi+1,2! vnx+1,2! vnx+2,2!vi-1,2!v2,2!v1,2!

vi,1! vi+1,1! vnx+1,1! vnx+2,1!vi-1,1!v2,1!v1,1!

u i
,j!

vi,j! vi+1,j! vnx+1,j! vnx+2,j!vi-1,j!v2,j!v1,j!

vi,j+1! vi+1,j+1! vnx+1,j+1! vnx+2,j+1!vi-1,j+1!v2,j+1!v1,j+1!

u i
-1

,j!

u 2
,j!

u 1
,j!

u i
+

1,
j!

u n
x+

1,
j!

u i
,j-

1!

u i
-1

,j,
-1!

u 2
,j-

1!

u 1
,j-

1!

u i
+

1,
-1

j!

u n
x+

1,
j-1
!

u i
,2
!

u i
-1

,2
!

u 2
,2
!

u 1
,2
!

u i
+

12
!

u n
x+

1,
2!

u i
,1!

u i
-1

,1!

u 2
,1
!

u 1
,1!

u i
+

1,
1!

u n
x+

1,
1!

pi,ny+1! pi+1,ny+1! pnx+1,ny+1! pnx+2,ny+1!pi-1,ny+1!p2,ny+1!p1,ny+1!

pi,ny+2! pi+1,ny+2! pnx+1,ny+2! pnx+2,ny+2!pi-1,ny+2!p2,ny+2!p1,ny+2!

vi,ny+1! vi+1,ny+1! vnx+1,ny+1! vnx+2,ny+1!vi-1,ny+1!v2,ny+1!v1,ny+1!

u i
,n

y+
1!

u i
-1

,n
y+

1!

u 2
,n

y+
1!

u 1
,n

y+
1!

u i
+

1,
ny

+
1!

u n
x+

1,
ny

+
1!

u i
,n

y+
2!

u i
-1

,n
y+

2!

u 2
,n

y+
2!

u 1
,n

y+
2!

u i
+

1,
ny

+
2!

u n
x+

1,
ny

+
2!

u i
,j+

1!

u i
-1

,j+
1!

u 2
,j+

1!

u 1
,j+

1!

u i
+

1,
j+

1!

u n
x+

1,
j+

1!

Lx, Nx!

Ly!
Ny!

Figure 2.4: The notation used for a standard staggered MAC mesh. The pres-
sure is assumed to be known at the center of the control volume outlined by a
thick solid line. The horizontal velocity components (u) are stored at the mid-
dle of the left and right edges of this control volume and the vertical velocity
components (v) are stored at middle of the top and bottom edges.

20 CHAPTER 2. SIMPLE FLOW SOLVER

2.5 The Computational Domain

Here we take the computational domain to be a rectangle of size Lx by Ly,
divided into Nx by Ny pressure control volumes. The pressure control volumes
are placed inside the computational domain, such that the boundaries of the
pressure control volumes at the edge of the domain coincide with the domain
boundary. In addition to the control volumes inside the domain we usually
provide one row of ghost cells outside the domain to help with implementing
boundary conditions. Thus, the pressure array is dimensioned p(Nx+2, Ny+2).
Similarly, we will need ghost points for the tangential velocity, but not the
normal velocity, which is given. The velocity arrays thus have dimensions:
u(Nx+1, Ny+2) and v(Nx+2, Ny+1) and the pressure array is p(Nx+2, Ny+2).
Figure 2.4 shows the layout of the full grid.

2.6 Boundary Conditions

Before attempting to evolve the solution using the discrete equations that we
have just derived, we must establish the appropriate boundary conditions. The
use of a staggered mesh makes the derivation of the appropriate boundary con-
ditions particularly straightforward. For the normal velocities the specification
of the boundary values is very simple. Since the location of the center of the
control volume coincides with the boundary, we can set the velocity equal to
what it should be. For a rigid wall the normal velocity is usually zero and for
inflow boundaries the normal velocity is generally given. For viscous flows we
must also specify the tangential velocity and this is slightly more complex, since
we do not store the velocity on the boundary. We do, however, have the velocity
half a grid spacing inside the flow and using this value, along with the known
value on the boundary, we can specify the “ghost” value at the center of the
ghost cell outside the boundary. To do so we assume that we know the ghost
value and that the wall velocity is given by a linear interpolation between the
ghost velocity and the velocity just inside the domain. For the u-velocity on the
bottom boundary, for example:

uwall = (1/2)(ui,1 + ui,2) (2.28)

where uwall is the tangent velocity on the wall and ui,1 is the ghost velocity.
Since the wall velocity and the velocity inside the domain, ui,2, are known, we
can easily find the ghost velocity

ui,1 = 2 uwall − ui,2. (2.29)

Similar equations are derived for the other boundaries. Notice that if the wall
velocity is zero, the ghost velocity is simply a reflection of the velocity inside.

The boundary condition for the pressure become particularly simple on a
staggered grid. Consider the vertical boundary in figure 2.5, on the left side of
the domain and passing through node (i− 1/2, j), where the horizontal velocity

2.7. NUMERICAL ALGORITHM 21

pi,j! pi+1,j!

vi,j+1/2!

vi,j-1/2!

vi+1,j+1/2!

vi+1,j-1/2!

ui+1/2,j!

fig4

Ub,j = ui-1/2,j!

Figure 2.5: A control volume next to a boundary where the normal velocity is
known

is Ub,j . The continuity equation for the cell next to the boundary, surrounding
the pressure node (i, j), is

un+1
i+1/2,j − Ub,j

∆x
+
vn+1
i,j+1/2 − v

n+1
i,j−1/2

∆y
= 0. (2.30)

Since the velocity at the left boundary is known, we only substitute the equations
for the correction velocities, (2.15) and (2.16), for the three unknown velocities,
through the top, bottom and right edge. Thus, the pressure equation for a point
next to the left boundary becomes:

1

∆x2

(
pi+1,j − pi,j
ρni+1,j + ρni,j

)
+

1

∆y2

(
pi,j+1 − pi,j
ρni,j+1 + ρni,j

− pi,j − pi,j−1

ρni,j + ρni,j−1

)

=
1

2∆t

(u∗i+1/2,j − Ub,j
∆x

+
v∗i,j+1/2 − v

∗
i,j−1/2

∆y

)
. (2.31)

Similar equations are derived for the pressure next to the other boundaries and
for each corner point. Notice that it is not necessary to impose any new condi-
tions on the pressure at the boundaries and that simply using incompressibility
yields the correct boundary equations.

In principle we need separate equations for the points near the boundary,
but we can get around this if we set ρni−1,j equal to a very large number at these
points (and keep the value of the ghost pressure to a finite number, such as zero)
so that the term involving the pressure in the ghost cell becomes approximately
zero. We shall use this trick in the simple code presented below.

2.7 Numerical Algorithm

The discrete equations written down above are solved in a sequence designed
to make sure all variables are available when needed. Assuming that the initial
flow field and density are given the algorithm is:

22 CHAPTER 2. SIMPLE FLOW SOLVER

1. Find a temporary velocity field using equations (2.13) and (2.14) , with
the advection and diffusion terms discretized using equations (2.20) and
(2.21) and (2.24) and (2.25), respectively.

2. Find the pressure using equation (2.26), with the appropriate boundary
conditions (2.31).

3. Correct the velocity field using equation (2.15) and (2.16).

4. Advect the density field

The code is stable if the time step is small enough. The step size is limited
by the diffusion part alone and by a combined criteria that ensures that diffusion
is large enough to keep the advection stable. For two-dimensional flow we must
have:

µ∆t

ρh2
≤ 1

4
(u · u)

ρ∆t

µ
≤ 2. (2.32)

Here, h is the smallest grid spacing (∆x or ∆y) and u is the maximum velocity.

So far, we have not said anything about how the density field is advected.
This can be done in several different ways and we will start by using a simple
upwind approximation for the advection to solve equation (1.2). The simple
upwind method is too diffusive to be of any real use in simulations of multiphase
flows but allows us to introduce a working code before describing front tracking
to advance the fluid interface.

2.8 Advecting the Density: Centered Differences
with Diffusion

To advect the density we use equation (1.2), rewritten to isolate the time deriva-
tive:

∂ρ

∂t
= −u · ∇ρ. (2.33)

For numerical implementation it is usually better to take advantage of the fact
that since the flow field is incompressible (by equation 1.3), we can write equa-
tion (2.33) as

∂ρ

∂t
= −∇ · (ρu). (2.34)

This is, of course, the mass conservation equation in its original form and work-
ing with this form allows us to ensure that mass is conserved exactly. Accurately
advocating the density is oner of the major challenges in simulations of mul-
tiphase flows, but here we will use a simple centered difference scheme. The
scheme is unstable in the absence of diffusion so we will add a diffusion term
and use the viscosity of the fluid as a diffusion coefficient so that the stability
limits are the same as for the fluids. In principle we should use the kinematic

2.9. NUMERICAL CODE (MATLAB) 23

viscosity, but since we will take the density to be of order one, either one will
work. Thus, we modify equation (2.35) by writing:

∂ρ

∂t
= −∇ · (ρu) + µ0∇2ρ. (2.35)

and use the discretization

ρn+1
i,j = ρni,j −

∆t

∆x

(
ui+1/2,j

ρi+1,j + ρi,j
2

− ui−1/2,j
ρi−1,j + ρi,j

2

)
−∆t

∆y

(
vi,j+1/2

ρi,j+1 + ρi,j
2

− ui,j−1/2
ρi,j−1 + ρi,j

2

)
+

∆t

∆x2
(ρi+1,j − 2ρi,j + ρi−1,j) +

∆t

∆y2
(ρi,j+1 − 2ρi,j + ρi,j−1) (2.36)

This is way to inaccurate for any serious computational work and is done here
just so that we can test the code.

2.9 Numerical Code (MATLAB)

The code below, written in MATLAB shows an implementation of the algorithm
described above, using the first order upwind method to advect the density. The
code is written to simulate the motion of a drop initially located in the middle of
a square domain. As gravity accelerates the drop downward, it becomes flatter
and the outer rim is pulled back by the flow. This code can be downloaded
from: code1.m

2.10 Results

Figure 2.6 shows the initial conditions and the final results from the code listed
below, and figure 2.7 shows a three-dimensional view of the density profile at
the final time (plotted using mesh(r)).

Often, we want to generate a movie of the results. In Matlab there are
several ways to do that, but one of the simplest way is to insert the following
line into the program, after the plot statement:

eval([’print -dpict ’,’temp’,num2str(is)]);pause(0.01);

This prints out each frame as a pict file. The files can then be assembled into a
movie.

2.11 Exercises

1. Run the code up to a later time, for the three different grid resolutions (adjust
the time step to keep it stable, if needed) and compare the results. You can also
compute the location of the center of mass versus time and see how it depends
on the resolution.

http://www.nd.edu/~gtryggva/MultiphaseDNS/code1-advdens.m

24 CHAPTER 2. SIMPLE FLOW SOLVER

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.6: The density and the velocity field at time zero and after the drop
has fallen a short distance.

0
5

10
15

20
25

30
35

0

10

20

30

40
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Figure 2.7: The density after the drop has fallen a short distance.

2.11. EXERCISES 25

2. Rayleigh-Taylor Instability: Change the code to follow the evolution of a heavy
fluid overlaying a lighter one. Make the side boundaries full slip, by setting the
ghost tangential velocity equal to the velocity inside the domain, and change the
initial condition to an interface perturbed by a cos wave of amplitude 0.1 times
the domain width. You can the change the density difference and the viscosity
to examine what effect these parameters have.

3. Change the discretization of the advection terms to the convective form and
compare the results with predictions from the code as it is. For the relatively
benign parameters used in the code the change should not make any noticeable
difference.

4. Make the boundary conditions periodic in the vertical directions, change the
domain to a square box, and follow the motion of a fluid blob as it crosses the
boundary. Notice that the fluid starts to fall because of gravity and eventually
we will have something like a parabolic velocity between the vertical walls.

26 CHAPTER 2. SIMPLE FLOW SOLVER

%==

% code1.m

% A very simple Navier-Stokes solver for a drop falling in a rectangular

% domain. The viscosity is taken to be a constant and a forward in time,

% centered in space discretization is used. The density is advected by a

% simple upwind scheme.

%==

%domain size and physical variables

Lx=1.0;Ly=1.0;gx=0.0;gy=-100.0; rho1=1.0; rho2=2.0; m0=0.01; rro=rho1;

unorth=0;usouth=0;veast=0;vwest=0;time=0.0;

rad=0.15;xc=0.5;yc=0.7; % Initial drop size and location

% Numerical variables

nx=32;ny=32;dt=0.00125;nstep=100; maxit=200;maxError=0.001;beta=1.2;

% Zero various arrys

u=zeros(nx+1,ny+2); v=zeros(nx+2,ny+1); p=zeros(nx+2,ny+2);

ut=zeros(nx+1,ny+2); vt=zeros(nx+2,ny+1); tmp1=zeros(nx+2,ny+2);

uu=zeros(nx+1,ny+1); vv=zeros(nx+1,ny+1); tmp2=zeros(nx+2,ny+2);

% Set the grid

dx=Lx/nx;dy=Ly/ny;

for i=1:nx+2; x(i)=dx*(i-1.5);end; for j=1:ny+2; y(j)=dy*(j-1.5);end;

% Set density

r=zeros(nx+2,ny+2)+rho1;

for i=2:nx+1,for j=2:ny+1;

if ((x(i)-xc)^2+(y(j)-yc)^2 < rad^2), r(i,j)=rho2;end,

end,end

%================== START TIME LOOP======================================

for is=1:nstep,is

% tangential velocity at boundaries

u(1:nx+1,1)=2*usouth-u(1:nx+1,2);u(1:nx+1,ny+2)=2*unorth-u(1:nx+1,ny+1);

v(1,1:ny+1)=2*vwest-v(2,1:ny+1);v(nx+2,1:ny+1)=2*veast-v(nx+1,1:ny+1);

for i=2:nx,for j=2:ny+1 % TEMPORARY u-velocity

ut(i,j)=u(i,j)+dt*(-0.25*(((u(i+1,j)+u(i,j))^2-(u(i,j)+ ...

u(i-1,j))^2)/dx+((u(i,j+1)+u(i,j))*(v(i+1,j)+ ...

v(i,j))-(u(i,j)+u(i,j-1))*(v(i+1,j-1)+v(i,j-1)))/dy)+ ...

m0/(0.5*(r(i+1,j)+r(i,j)))*(...

(u(i+1,j)-2*u(i,j)+u(i-1,j))/dx^2+ ...

(u(i,j+1)-2*u(i,j)+u(i,j-1))/dy^2)+gx);

end,end

for i=2:nx+1,for j=2:ny % TEMPORARY v-velocity

vt(i,j)=v(i,j)+dt*(-0.25*(((u(i,j+1)+u(i,j))*(v(i+1,j)+ ...

v(i,j))-(u(i-1,j+1)+u(i-1,j))*(v(i,j)+v(i-1,j)))/dx+ ...

((v(i,j+1)+v(i,j))^2-(v(i,j)+v(i,j-1))^2)/dy)+ ...

m0/(0.5*(r(i,j+1)+r(i,j)))*(...

(v(i+1,j)-2*v(i,j)+v(i-1,j))/dx^2+ ...

(v(i,j+1)-2*v(i,j)+v(i,j-1))/dy^2)+gy);

end,end

%==

% Compute source term and the coefficient for p(i,j)

rt=r; lrg=1000;

rt(1:nx+2,1)=lrg;rt(1:nx+2,ny+2)=lrg;

rt(1,1:ny+2)=lrg;rt(nx+2,1:ny+2)=lrg;

2.11. EXERCISES 27

for i=2:nx+1,for j=2:ny+1

tmp1(i,j)= (0.5/dt)*((ut(i,j)-ut(i-1,j))/dx+(vt(i,j)-vt(i,j-1))/dy);

tmp2(i,j)=1.0/((1./dx)*(1./(dx*(rt(i+1,j)+rt(i,j)))+...

1./(dx*(rt(i-1,j)+rt(i,j))))+...

(1./dy)*(1./(dy*(rt(i,j+1)+rt(i,j)))+...

1./(dy*(rt(i,j-1)+rt(i,j)))));

end,end

for it=1:maxit % SOLVE FOR PRESSURE

oldArray=p;

for i=2:nx+1,for j=2:ny+1

p(i,j)=(1.0-beta)*p(i,j)+beta* tmp2(i,j)*(...

(1./dx)*(p(i+1,j)/(dx*(rt(i+1,j)+rt(i,j)))+...

p(i-1,j)/(dx*(rt(i-1,j)+rt(i,j))))+...

(1./dy)*(p(i,j+1)/(dy*(rt(i,j+1)+rt(i,j)))+...

p(i,j-1)/(dy*(rt(i,j-1)+rt(i,j)))) - tmp1(i,j));

end,end

if max(max(abs(oldArray-p))) <maxError, break,end

end

for i=2:nx,for j=2:ny+1 % CORRECT THE u-velocity

u(i,j)=ut(i,j)-dt*(2.0/dx)*(p(i+1,j)-p(i,j))/(r(i+1,j)+r(i,j));

end,end

for i=2:nx+1,for j=2:ny % CORRECT THE v-velocity

v(i,j)=vt(i,j)-dt*(2.0/dy)*(p(i,j+1)-p(i,j))/(r(i,j+1)+r(i,j));

end,end

%=======ADVECT DENSITY using centered difference plus diffusion ==========

ro=r;

for i=2:nx+1,for j=2:ny+1

r(i,j)=ro(i,j)-(0.5*dt/dx)*(u(i,j)*(ro(i+1,j)...

+ro(i,j))-u(i-1,j)*(ro(i-1,j)+ro(i,j)))...

-(0.5* dt/dy)*(v(i,j)*(ro(i,j+1)...

+ro(i,j))-v(i,j-1)*(ro(i,j-1)+ro(i,j)))...

+(m0*dt/dx/dx)*(ro(i+1,j)-2.0*ro(i,j)+ro(i-1,j))...

+(m0*dt/dy/dy)*(ro(i,j+1)-2.0*ro(i,j)+ro(i,j-1));

end,end

%==

time=time+dt % plot the results

uu(1:nx+1,1:ny+1)=0.5*(u(1:nx+1,2:ny+2)+u(1:nx+1,1:ny+1));

vv(1:nx+1,1:ny+1)=0.5*(v(2:nx+2,1:ny+1)+v(1:nx+1,1:ny+1));

for i=1:nx+1,xh(i)=dx*(i-1);end; for j=1:ny+1,yh(j)=dy*(j-1);end

hold off,contour(x,y,flipud(rot90(r))),axis equal,axis([0 Lx 0 Ly]);

hold on;quiver(xh,yh,flipud(rot90(uu)),flipud(rot90(vv)),’r’);

pause(0.01)

end

28 CHAPTER 2. SIMPLE FLOW SOLVER

Chapter 3

Advecting the Density in
2D using Front Tracking

Instead of advecting the density directly, by solving equation (1.2), we can move the
interface between the different fluids and reconstruct the density from its location.
This is usually called ”front tracking.” Here we describe a very simple implementation
of front tracking and show how to modify the code introduced in the last chapter to
update the density in that way. Unlike when we advect the density directly, using
front tracking is a two step process: we move the boundary and then we construct
the density field. In some cases we define an indicator function that is used to set
the density and other material properties but here we use the density as the indicator
function.

First, however, we have to decide how we represent the interface. Generally the
interfaces must be dynamically restructured by adding and deleting points as the
interface deforms. In three dimension the correct data structure can be critical for
the successful implementation of the method. For two-dimensional flow, on the other
hand, essentially any data structure can be made to work rather easily. Here we will
use a simple ordered array of points where we represent the interface by markers whose
coordinates are given by:

xf (l) =
(
x(l), y(l)

)
, l = 1,, Nf . (3.1)

Since the points are ordered so that point l comes after point l − 1 and before point
l + 1, no additional information about their connectivity is needed. This makes it
particularly simple to compute, for example, the distance between two points

∆sl,l−1 =
√

(x(l)− x(l − 1))2 + (y(l)− y(l − 1))2. (3.2)

The front is shown schematically in figure 3.1. In the code presented below we will
carry two extra points that are identical to the first and the second point so that
x(Nf + 1) = x(1) and x(Nf + 2) = x(1) and so on. We will work with the points
l = 2→ Nf + 1 and use points 1 and Nf + 2 as ghost points to simplify operations on
the front.

29

30 CHAPTER 3. 2D FRONT TRACKING

1!
2!

3!

Nf!
Nf -1!

Nf -2!

4!
5!l!

l-1!

l+1!

Figure 3.1: The front used to mark the interface between two fluids.

3.1 Moving the front

To move the marker points we interpolate their velocities from the velocity field given
on the fixed fluid grid. Similarly, quantities such as the density jump and the sur-
face tension are smoothed from the front onto the fixed grid. The interpolation and
smoothing can be done in different ways but here we will use a bilinear interpolation
and once we have determined the weights, we will use the same ones for the smooth-
ing. Before communicating between the front and the fixed grid, we need to identify
the fixed grid points closest to a given point on the front. For a rectangular domain
of length Lx, divided into Nx equal sized control volumes, with the grid point where
i = 1 corresponding to x = 0, the grid point to the left of front point xf is given by:

i = FLOOR(xf (l)/∆x) + 1 (3.3)

where FLOOR stands for an operation rounding its operand down to its closest integer
value. While this expression holds for the u-velocities on the grid shown in figure 2.4,
it must be modified slightly for the v-velocities where the grid is displace half a grid
spacing to the left. Then we must use

i = FLOOR((xf (l) + 0.5∆x)/∆x) + 1. (3.4)

For the j-direction we swap those. Figure 3.2 show the layout of the grid points along
the x-axis and the effect of shifting the grid.

These expressions are also used when we smooth front quantities onto the velocity
grid-points. Notice that while it is trivial to find which fixed grid points are close to a
given front point, the reverse problem is much harder. Usually it is possible to arrange
the code in such a way that we need to find fixed grid points close to a given front
point, rather than the other way around.

3.1. MOVING THE FRONT 31

1 2 3 4 5 6 7 8!
-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5!

xShift=1.0!

1 2 3 4 5 6 7 8!
xShift=1.5!

Redo!!

1 2 3 4 5 nx nx+1

1 2 3 4 5 nx nx+1 nx+2

Pressure and Vertical Velocity (v)!

Horizontal Velocity (u)!

Left Boundary Front Location Right Boundary!

Figure 3.2: Finding which grid point is closest to a given front point. The red
arrows show which grid points the front communicates with for for velocity and
pressure.

After the fixed grid points that are closest to a given location on the front have
been located, we can interpolate values on the fixed grid to the front. If we use a
bilinear interpolation, then the front value φlf is given by:

φlf = φi,j
(xi+1 − xf

∆x

)(yj+1 − yf
∆y

)
+ φi,j+1

(xi+1 − xf
∆x

)(yf − yj
∆y

)
+

φi+1,j

(xf − xi
∆x

)(yj+1 − yf
∆y

)
+ φi+1,j+1

(xf − xi
∆x

)(yf − yj
∆y

)
. (3.5)

Here xi is the x-coordinate of the vertical grid line to the left of the front point and
yj is the y-coordinate of the horizontal grid line below the front point, both found
using equation (3.5). φi,j is the value of φ at the fixed grid point to the left and
below the front point. See figure 3.3. The weights can be interpreted as the area
fractions, as shown in the figure. Bilinear interpolation is therefore often referred to
as area-weighting.

With the coefficients in equation (3.5) interpreted as weights, we can rewrite it as

φlf = wli,jφi,j + wli,j+1φi,j+1 + wli+1,jφi+1,j + wli+1,j+1φi+1,j+1. (3.6)

Other interpolation strategies are possible and in general, the interpolation is given
by

φlf =
∑
ij

wli,jφi,j , (3.7)

where φlf is a quantity on the front at location l. φi,j is the same quantity on the grid,

wli,j is the weight of each grid point with respect to location l, and the summation is
over the points on the fixed grid that are close to the front point. The weights can be
selected in many different ways, but must always sum up to one:∑

i,j

wli,j = 1. (3.8)

The bilinear interpolation given by equation (3.5) generally works very well and we
will use it for most of the codes described in this tutorial.

32 CHAPTER 3. 2D FRONT TRACKING

!i, j+1 !i+1, j+1

wi+1, j+1
l

! f
l

!i, j !i+1, j
wi, j+1
l

wi, j
lwi+1, j

l

yj+1

yj
xi xi+1

Figure 3.3: The interpretation of the weights in equation 3.5 as area fractions.

For the velocity, we apply equation (3.5) to each velocity component. For staggered
grids, as we are using here, usually we interpolate each component separately, since
they are given on different fixed grids. Once the velocity of the front (unf) has been
interpolated from the grid, the front can be moved. If we use a simple explicit first-
order time integration, then the new front location is given by

xn+1
f = xnf + ∆tunf (3.9)

3.2 Constructing the density field

To find the density, given the location of the interface, we use the fact that the front
marks the jump in the density. In terms of a Heaviside function defined by

H =

{
1 fluid 1
0 fluid 2

(3.10)

the density can be written as

ρ = ρ1H + (1−H)ρ2. (3.11)

On the fixed grid the sharp jump is translated into a steep gradient on the fixed grid.
The gradient of the density can be related to the jump by writing it as:

∇ρ = (ρ1 − ρ2)∇H = ∆ρnδ(n). (3.12)

where ∆ρ = (ρ1 − ρ2) is the jump in the value of the density across the interface
(usually a constant for each interface) and we have used that ∇H = δ(n)n. Here, n
is a coordinate normal to the interface. Since the front represents a δ-function, the
transfer corresponds to the construction of an approximation to this δ-function on the
fixed grid. This smoothing can be done in several different ways, but in many cases
the transferred quantity is conserved and it is important to preserve the integrated
value when moving from the front to the fixed grid. The interface quantity, φf , is
usually expressed in a value per unit area (or length in two dimensions), but the grid
value, φi,j , should be given in terms of value per unit volume.

3.2. CONSTRUCTING THE DENSITY FIELD 33

 ρ1

 ρ2

 S1 S2

 SI

Front!

Figure 3.4: Conservation when smoothing interface quantities onto the grid.

While this is relatively obvious for quantities such as the surface force, it is true
for the density gradient as well. This can be seen in the following way: Consider the
domain sketched in figure 3.4 and integrate over the domain containing the interface.
By the divergence theorem we can rewrite the integral as an integral over the boundary∫

V

∇ρdv =

∮
S

ρnds (3.13)

The contour S can be written as sum of three parts, one enclosing ρ1, another enclosing
ρ2 and a third enclosing the interface, or S = S1 + S2 + SI . Thus∫

V

∇ρdv = ρ1

∮
S1

nds+ ρ2

∮
S2

nds+

∮
SI

ρds (3.14)

The first two integrals are zero, since
∮
nds = 0 and the last integral is∮

SI

ρds =

∫
−SI

ρ1nds+

∫
SI

ρ2nds =

∫
(ρ1 − ρ2)nds. (3.15)

Therefore ∫
V

∇ρdv =

∫
SI

∆ρnds. (3.16)

where ∆ρ = ρ1 − ρ2.
This can be generalized for any conserved variable φ and to ensure that the total

value is conserved in the smoothing, we must require that:∫
∆v

φi,j(x)dv =

∫
∆s

φf (s)ds. (3.17)

where ∆s is the area (length in two dimensions) of the interface that is smoothed to
volume ∆v (area in two dimensions). For two-dimensional flow, the discrete form of
the grid value is therefore given by

φi,j =
∑
l

φlfw
l
i,j

∆sl
∆x∆y

(3.18)

where ∆sl is the area of element l and ∆x and ∆y are the grid spacings. Here we will
use the same weights, wli,j , for the smoothing as used for the interpolation.

34 CHAPTER 3. 2D FRONT TRACKING

!"
!y

#
$%

&
'(i, j)1/2

!i, j!i"1, j !i+1, j

!"
!y

#
$%

&
'(i, j+1/2

!"
!x

#
$%

&
'(i+1/2, j

!"
!x

#
$%

&
'(i)1/2, j

Figure 3.5: The generation of the density field.

We can, at least in principle, integrate the density gradient directly from a point
where the density is known. If we distribute the gradient onto a staggered grid, the
x-gradient is available at points (i − 1/2, j) and so on (see figure 3.5 for the two-
dimensional case) and if the density at (i− 1, j) is known, then

ρi,j = ρi−1,j + ∆x
(∂ρ
∂x

)
i−1/2,j

. (3.19)

By repeated application of this equation we can construct the density value everywhere,
provided we start at a point where the density field is known. Although this operation
only has to be performed at points near the front, since the density away from the
front has not changed, we need to find a point from which to integrate. The density
field can also depend slightly on the direction in which the integration is done and
errors can accumulate if we integrate over several grid points, so that the value of the
density on the other side of the interface may not be correct.

To get a more symmetric expression for the density at (i, j) we can integrate the
density gradient from the other three grid points, (i+ 1, j), (i, j+ 1) and (i, j− 1) and
average the results. The results can be rearranged to obtain:

ρi,j = 0.25 ∗
{
ρi−1,j + ρi+1,j + ρi,j−1 + ρi,j+1 +

∆x

((∂ρ
∂x

)
i−1/2,j

−
(∂ρ
∂x

)
i+1/2,j

)
+ ∆y

((∂ρ
∂y

)
i,j−1/2

−
(∂ρ
∂y

)
i,j+1/2

)}
. (3.20)

which can be iterated to solved for ρi,j . This iteration can be accelerated using SOR or
more advanced iterative techniques. In the code presented here, we update the density
at every point in the domain, but in more advanced codes we can limit the updating
to the vicinity of the interface. Iterating over the entire domain can generally spreads
out the error so we can end up with errors in density away from the interface, if we
stop before obtaining full convergence. Thus, limiting the iterations to only the points
close to the interface is generally much more efficient.

One might be tempted to ask, why the rather elaborate approach to construct
the density from the front location? Would it not be simpler to simply run over
the front and set the density at the fixed grid points as a function of the minimum
distance from the front? The answer is primarily that the present approach allows us
to automatically deal with situations shown in figure 3.6 where two interfaces occupy

3.3. RESTRUCTURING THE FRONT 35

Figure 3.6: The generation of the density field close to a thin neck.

the same grid cell. By working with the gradients, which cancel on the fixed grid, the
ambiguity of setting the value of a grid point next to a double interface disappears.

3.3 Restructuring the front

Figure 3.7: Restructuring the front.
The front point vector are first copied
to a new vector and the points are then
copied back, one by one, adding and
deleting points as needed.

Since the velocity of front points varies,
generally the distance between front
points will change as they move. They
can, in particular, move sufficiently far
apart so that the front no longer is well
resolved. The points can also move close
together and it is usually useful to delete
points that crowd together, although it
is not as important as adding points.

For an interface in a two-dimensional
flow, consisting of ordered points, adding
and deleting points is straightforward.
We start by copying the front informa-
tion (the coordinates of the points) into
temporary array (xold) and then copy
the points back into the original array
one by one, checking the distance be-
tween the point we are copying and the
last point that we copied. If the distance
between the points is too large, we cre-
ate a new point half way between the two
and put it where the next point should
go. Once that is done we copy our point
into the next empty location of the orig-
inal array. If the distance is less than a
prescribed minimum we do not copy the
point into the new array and move to the
next point. If the distance is above the
minimum distance and below the maxi-
mum distance, we copy the point directly

36 CHAPTER 3. 2D FRONT TRACKING

into the new array. In this approach the number of front points will generally change,
depending on how many points we add or delete. Figure 3.7 shows the restructuring
schematically. The array on the left is the temporary one, holding the original front
points, which are copied one-by-one into the new array on the right. Notice that this
operations allows the last point to be deleted so in order to close the front, we set the
location of the last point equal to the first one.

In the sample code below, we use linear interpolation to find the location of the
new point, when we need to add one. Generally it is better to use a higher order inter-
polation, particularly when surface tension is included. When the front is represented
by an unstructured grid—as are needed for three-dimensional flows—a more elaborate
approach is generally necessary.

The most obvious place to restructure the front is right after we have moved it and
before we distribute the gradients and this is what is done in the code here. For the
second order code, however, where we take two steps and then average the results, we
can only restructure the front once per time step and thus will move it to a different
place.

3.4 Numerical Code (MATLAB)

In the code at the end of this chapter we have replaced the advection of the density
used in the code presented above, by the front tracking code described in this section.
This code can be downloaded from: code2.m

3.5 Results

Figure 3.8 shows the initial conditions and the final results from the code listed below,
and figure 3.9 shows a three-dimensional view of the density profile at the final time
(plotted using mesh(r)). Obviously the density is much better preserved than when
we advocated it using the advection diffusion equation.

3.6 Exercises

1. Run the code up to a later time, for the three different grid resolutions (adjust
the time step to keep it stable, if needed) and compare the results. You can also
compute the location of the center of mass versus time and see how it depends
on the resolution.

2. Rayleigh-Taylor Instability: Change the code to follow the evolution of a heavy
fluid overlaying a lighter one. Make the side boundaries full slip, by setting the
ghost tangential velocity equal to the velocity inside the domain, and change the
initial condition to an interface perturbed by a cos wave of amplitude 0.1 times
the domain width. You can the change the density difference and the viscosity
to examine what effect these parameters have.

3. Modify the code to allow simulations of two drops. The simplest, although not
the most elegant, approach is to split the front loops into two parts and do each
drop separately.

http://www.nd.edu/~gtryggva/MultiphaseDNS/code2-ftr.m

3.6. EXERCISES 37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.8: The front and the velocity field at time zero and after the drop has
fallen a short distance.

0
5

10
15

20
25

30
35

0

10

20

30

40
0.8

1

1.2

1.4

1.6

1.8

2

Figure 3.9: The density after the drop has fallen a short distance.

38 CHAPTER 3. 2D FRONT TRACKING

%==

% code2.m:

% A very simple Navier-Stokes solver for a drop falling in a rectangular

% box. A forward in time, centered in space discretization is used.

% The density is advected by a front tracking scheme and a stretched grid

% is used, allowing us to concentrate the grid points in specific areas

%==

%domain size and physical variables

Lx=1.0;Ly=1.0;gx=0.0;gy=-100.0; rho1=1.0; rho2=2.0; m0=0.01; rro=rho1;

unorth=0;usouth=0;veast=0;vwest=0;time=0.0;

rad=0.15;xc=0.5;yc=0.7; % Initial drop size and location

% Numerical variables

nx=32;ny=32;dt=0.00125;nstep=100; maxit=200;maxError=0.001;beta=1.2;

% Zero various arrys

u=zeros(nx+1,ny+2); v=zeros(nx+2,ny+1); p=zeros(nx+2,ny+2);

ut=zeros(nx+1,ny+2); vt=zeros(nx+2,ny+1); tmp1=zeros(nx+2,ny+2);

uu=zeros(nx+1,ny+1); vv=zeros(nx+1,ny+1); tmp2=zeros(nx+2,ny+2);

% Set the grid

dx=Lx/nx;dy=Ly/ny;

for i=1:nx+2; x(i)=dx*(i-1.5);end; for j=1:ny+2; y(j)=dy*(j-1.5);end;

% Set density in the domain and the drop

r=zeros(nx+2,ny+2)+rho1;

for i=2:nx+1,for j=2:ny+1;

if ((x(i)-xc)^2+(y(j)-yc)^2 < rad^2), r(i,j)=rho2; end,

end,end

%================== SETUP THE FRONT ===================

Nf=100; xf=zeros(1,Nf+2);yf=zeros(1,Nf+2);

uf=zeros(1,Nf+2);vf=zeros(1,Nf+2);

tx=zeros(1,Nf+2);ty=zeros(1,Nf+2);

for l=1:Nf+2, xf(l)=xc-rad*sin(2.0*pi*(l-1)/(Nf));

yf(l)=yc+rad*cos(2.0*pi*(l-1)/(Nf));end

%================== START TIME LOOP======================================

for is=1:nstep,is

fx=zeros(nx+2,ny+2);fy=zeros(nx+2,ny+2); % Set fx & fy to zero

%---

% tangential velocity at boundaries

u(1:nx+1,1)=2*usouth-u(1:nx+1,2);u(1:nx+1,ny+2)=2*unorth-u(1:nx+1,ny+1);

v(1,1:ny+1)=2*vwest-v(2,1:ny+1);v(nx+2,1:ny+1)=2*veast-v(nx+1,1:ny+1);

for i=2:nx,for j=2:ny+1 % TEMPORARY u-velocity

ut(i,j)=u(i,j)+dt*(-0.25*(((u(i+1,j)+u(i,j))^2-(u(i,j)+ ...

u(i-1,j))^2)/dx+((u(i,j+1)+u(i,j))*(v(i+1,j)+ ...

v(i,j))-(u(i,j)+u(i,j-1))*(v(i+1,j-1)+v(i,j-1)))/dy)+ ...

(m0/(0.5*(r(i+1,j)+r(i,j))))*(...

(u(i+1,j)-2*u(i,j)+u(i-1,j))/dx^2+ ...

(u(i,j+1)-2*u(i,j)+u(i,j-1))/dy^2)+ gx);

end,end

for i=2:nx+1,for j=2:ny % TEMPORARY v-velocity

vt(i,j)=v(i,j)+dt*(-0.25*(((u(i,j+1)+u(i,j))*(v(i+1,j)+ ...

v(i,j))-(u(i-1,j+1)+u(i-1,j))*(v(i,j)+v(i-1,j)))/dx+ ...

3.6. EXERCISES 39

((v(i,j+1)+v(i,j))^2-(v(i,j)+v(i,j-1))^2)/dy)+ ...

(m0/(0.5*(r(i,j+1)+r(i,j))))*(...

(v(i+1,j)-2*v(i,j)+v(i-1,j))/dx^2+ ...

(v(i,j+1)-2*v(i,j)+v(i,j-1))/dy^2)+ gy);

end,end

%==

% Compute source term and the coefficient for p(i,j)

rt=r; lrg=1000;

rt(1:nx+2,1)=lrg;rt(1:nx+2,ny+2)=lrg;

rt(1,1:ny+2)=lrg;rt(nx+2,1:ny+2)=lrg;

for i=2:nx+1,for j=2:ny+1

tmp1(i,j)= (0.5/dt)*((ut(i,j)-ut(i-1,j))/dx+(vt(i,j)-vt(i,j-1))/dy);

tmp2(i,j)=1.0/((1./dx)*(1./(dx*(rt(i+1,j)+rt(i,j)))+...

1./(dx*(rt(i-1,j)+rt(i,j))))+...

(1./dy)*(1./(dy*(rt(i,j+1)+rt(i,j)))+...

1./(dy*(rt(i,j-1)+rt(i,j)))));

end,end

for it=1:maxit % SOLVE FOR PRESSURE

oldArray=p;

for i=2:nx+1,for j=2:ny+1

p(i,j)=(1.0-beta)*p(i,j)+beta* tmp2(i,j)*(...

(1./dx)*(p(i+1,j)/(dx*(rt(i+1,j)+rt(i,j)))+...

p(i-1,j)/(dx*(rt(i-1,j)+rt(i,j))))+...

(1./dy)*(p(i,j+1)/(dy*(rt(i,j+1)+rt(i,j)))+...

p(i,j-1)/(dy*(rt(i,j-1)+rt(i,j)))) - tmp1(i,j));

end,end

if max(max(abs(oldArray-p))) <maxError, break,end

end

for i=2:nx,for j=2:ny+1 % CORRECT THE u-velocity

u(i,j)=ut(i,j)-dt*(2.0/dx)*(p(i+1,j)-p(i,j))/(r(i+1,j)+r(i,j));

end,end

for i=2:nx+1,for j=2:ny % CORRECT THE v-velocity

v(i,j)=vt(i,j)-dt*(2.0/dy)*(p(i,j+1)-p(i,j))/(r(i,j+1)+r(i,j));

end,end

%================== ADVECT FRONT =====================

for l=2:Nf+1

ip=floor(xf(l)/dx)+1; jp=floor((yf(l)+0.5*dy)/dy)+1;

ax=xf(l)/dx-ip+1;ay=(yf(l)+0.5*dy)/dy-jp+1;

uf(l)=(1.0-ax)*(1.0-ay)*u(ip,jp)+ax*(1.0-ay)*u(ip+1,jp)+...

(1.0-ax)*ay*u(ip,jp+1)+ax*ay*u(ip+1,jp+1);

ip=floor((xf(l)+0.5*dx)/dx)+1; jp=floor(yf(l)/dy)+1;

ax=(xf(l)+0.5*dx)/dx-ip+1;ay=yf(l)/dy-jp+1;

vf(l)=(1.0-ax)*(1.0-ay)*v(ip,jp)+ax*(1.0-ay)*v(ip+1,jp)+...

(1.0-ax)*ay*v(ip,jp+1)+ax*ay*v(ip+1,jp+1);

end

for i=2:Nf+1, xf(i)=xf(i)+dt*uf(i); yf(i)=yf(i)+dt*vf(i);end %MOVE THE FRONT

xf(1)=xf(Nf+1);yf(1)=yf(Nf+1);xf(Nf+2)=xf(2);yf(Nf+2)=yf(2);

%------------ Add points to the front ------------

xfold=xf;yfold=yf; j=1;

for l=2:Nf+1

ds=sqrt(((xfold(l)-xf(j))/dx)^2 + ((yfold(l)-yf(j))/dy)^2);

if (ds > 0.5)

40 CHAPTER 3. 2D FRONT TRACKING

j=j+1;xf(j)=0.5*(xfold(l)+xf(j-1));yf(j)=0.5*(yfold(l)+yf(j-1));

j=j+1;xf(j)=xfold(l);yf(j)=yfold(l);

elseif (ds < 0.25)

% DO NOTHING!

else

j=j+1;xf(j)=xfold(l);yf(j)=yfold(l);

end

end

Nf=j-1;

xf(1)=xf(Nf+1);yf(1)=yf(Nf+1);xf(Nf+2)=xf(2);yf(Nf+2)=yf(2);

%------------ distribute gradient --------------

fx=zeros(nx+2,ny+2);fy=zeros(nx+2,ny+2); % Set fx & fy to zero

for l=2:Nf+1

nfx=-0.5*(yf(l+1)-yf(l-1))*(rho2-rho1);

nfy=0.5*(xf(l+1)-xf(l-1))*(rho2-rho1); % Normal vector

ip=floor(xf(l)/dx)+1; jp=floor((yf(l)+0.5*dy)/dy)+1;

ax=xf(l)/dx-ip+1; ay=(yf(l)+0.5*dy)/dy-jp+1;

fx(ip,jp) =fx(ip,jp)+(1.0-ax)*(1.0-ay)*nfx/dx/dy;

fx(ip+1,jp) =fx(ip+1,jp)+ax*(1.0-ay)*nfx/dx/dy;

fx(ip,jp+1) =fx(ip,jp+1)+(1.0-ax)*ay*nfx/dx/dy;

fx(ip+1,jp+1)=fx(ip+1,jp+1)+ax*ay*nfx/dx/dy;

ip=floor((xf(l)+0.5*dx)/dx)+1; jp=floor(yf(l)/dy)+1;

ax=(xf(l)+0.5*dx)/dx-ip+1; ay=yf(l)/dy-jp+1;

fy(ip,jp) =fy(ip,jp)+(1.0-ax)*(1.0-ay)*nfy/dx/dy;

fy(ip+1,jp) =fy(ip+1,jp)+ax*(1.0-ay)*nfy/dx/dy;

fy(ip,jp+1) =fy(ip,jp+1)+(1.0-ax)*ay*nfy/dx/dy;

fy(ip+1,jp+1)=fy(ip+1,jp+1)+ax*ay*nfy/dx/dy;

end

%------------ construct the density --------------

for iter=1:maxit

oldArray=r;

for i=2:nx+1,for j=2:ny+1

r(i,j)=0.25*(r(i+1,j)+r(i-1,j)+r(i,j+1)+r(i,j-1)+...

dx*fx(i-1,j)-dx*fx(i,j)+...

dy*fy(i,j-1)-dy*fy(i,j));

end,end

if max(max(abs(oldArray-r))) <maxError, break,end

end

%==

time=time+dt % plot the results

uu(1:nx+1,1:ny+1)=0.5*(u(1:nx+1,2:ny+2)+u(1:nx+1,1:ny+1));

vv(1:nx+1,1:ny+1)=0.5*(v(2:nx+2,1:ny+1)+v(1:nx+1,1:ny+1));

for i=1:nx+1,xh(i)=dx*(i-1);end; for j=1:ny+1,yh(j)=dy*(j-1);end

hold off,contour(x,y,flipud(rot90(r))),axis equal,axis([0 Lx 0 Ly]);

hold on;quiver(xh,yh,flipud(rot90(uu)),flipud(rot90(vv)),’r’);

plot(xf(1:Nf),yf(1:Nf),’k’,’linewidth’,5);pause(0.01)

end

Chapter 4

A More Complete Code

Here we change the code introduced in the last section to make it more complete by
allowing for different viscosities in the different fluids and by introducing surface ten-
sion. We will also make the time integration second order and allow for the possibility
of subtracting the hydrostatic pressure gradient.

4.1 Surface Tension

In simulations of immiscible multiphase flows we are frequently interested in length
scales where surface tension is important. Surface tension acts only at the interface
and the force per unit area is given by

fσ = σκn (4.1)

where σ is the surface tension coefficient and κ is the curvature. For two-dimensional
flow, we have

κn =
∂t

∂s
(4.2)

where t is a tangent to the interface. To allow us to construct the force per unit
volume on the fixed grid, we need the total force on an interface segment, or

δf lσ = σ

∫
∆sl

∂t

∂s
ds = σ(tl+1/2 − tl−1/2). (4.3)

Once the force at each interface point has been found, it can be smoothed onto the
grid in exactly the same way as the density jump (equation 3.18). The only thing to
notice is that the force found above is the force on a segment of a finite length of the
front and we therefore do not need to multiply by ∆s. Thus we smooth it using:

(fσ)i,j =
∑
l

δf lσw
l
i,j

∆x∆y
. (4.4)

Once we have the force on the fixed grid, we can add it to the Navier-Stokes equations.
Since the surface tension is zero except at the interface, it is added as a singular force,
given by

σκnδ(n) (4.5)

where δ is a one-dimensional delta function of the normal coordinate n.

41

42 CHAPTER 4. A MORE COMPLETE CODE

 t1

 t2

Figure 4.1: Surface tension on a finite interface segment.

4.2 Different Viscosities

For flows where the viscosity of the different fluids is different, we must use the full
deformation tensor when computing the viscous stresses. The momentum equation
then is

ρ
∂u

∂t
+ ρ∇uu = −∇p+ ρg +∇ · µ(∇u +∇Tu) + f (4.6)

For a finite volume method the viscous term can be written as

D =
1

V

∫
V

∇ · µ(∇u +∇Tu)dv =
1

V

∮
S

µ(∇u +∇Tu) · n ds. (4.7)

Approximating the integral of the viscous fluxes around the boundaries of the velocity
control volumes (equation 2.9) by the value at the midpoint of each edge times the
length of the edge results in:

(Dx)ni+1/2,j =

1

∆x∆y

{(
2
(
µ
∂u

∂x

)
i+1,j

− 2
(
µ
∂u

∂x

)
i,j

)
∆y

+

(
µ
(∂u
∂y

+
∂v

∂x

)
i+1/2,j+1/2

− µ
(∂u
∂y

+
∂v

∂x

)
i+1/2,j−1/2

)
∆x

}
(4.8)

and

(Dy)ni,j+1/2 =

1

∆x∆y

{(
µ
(∂v
∂x

+
∂u

∂y

)
i+1/2,j+1/2

− µ
(∂v
∂x

+
∂u

∂y

)
i−1/2,j+1/2

)
∆y

+

(
2
(
µ
∂v

∂y

)
i,j+1

− 2
(
µ
∂v

∂y

)
i,j

)
∆x

}
. (4.9)

4.3. SECOND ORDER IN TIME 43

The velocity derivatives are found using the standard second-order centered differences,
resulting in:

(Dx)ni+1/2,j =

1

∆x

{
2µni+1,j

(uni+3/2,j − uni+1/2,j

∆x

)
− 2µni,j

(uni+1/2,j − uni−1/2,j

∆x

)}

+
1

∆y

{
µni+1/2,j+1/2

(uni+1/2,j+1 − uni+1/2,j

∆y
+
vni+1,j+1/2 − vni,j+1/2

∆x

)
−µni+1/2,j−1/2

(uni+1/2,j − uni+1/2,j−1

∆y
+
vni+1,j−1/2 − vni,j−1/2

∆x

)}
(4.10)

and

(Dy)ni,j+1/2 =

1

∆x

{(
µni+1/2,j+1/2

(uni+1/2,j+1 − uni+1/2,j

∆y
+
vni+1,j+1/2 − vni,j+1/2

∆x

)
−µni−1/2,j+1/2

(uni−1/2,j+1 − uni−1/2,j

∆y
+
vni,j+1/2 − vni−1,j+1/2

∆x

)}

+
1

∆y

{
2µni,j+1

(vni,j+3/2 − vni,j+1/2

∆y

)
− 2µni,j

(vni,j+1/2 − vni,j−1/2

∆y

)}
. (4.11)

To find the viscosity at the points where it is not defined, the simplest approach is to
use linear interpolation, yielding:

µni+1/2,j+1/2 =
1

4
(µni+1,j + µni+1,j+1 + µni,j+1 + µni,j)

µni+1/2,j−1/2 =
1

4
(µni+1,j−1 + µni+1,j + µni,j + µni,j−1) (4.12)

µni−1/2,j+1/2 =
1

4
(µni,j + µni,j+1 + µni−1,j+1 + µni−1,j)

We note that instead of finding the viscosities at points where it is not defined
using an arithmetic average, it is sometimes beneficial to use the geometric mean.

4.3 Second Order in Time

The code described above is only first order in time. It can easily be made second
order by the following simple predictor-corrector method. The simplest such method
is:

f∗ = fn + ∆t
(df
dt

)n
fn+1 = fn +

∆t

2

((df
dt

)n
+
(df
dt

)∗)
(4.13)

for the integration of f(t) forward in time. Here, the star on the derivative in the
second step means that the derivative is found using f∗. For our purpose it is better

44 CHAPTER 4. A MORE COMPLETE CODE

to rearrange the steps slightly

f∗ = fn + ∆t
(df
dt

)n
f∗∗ = f∗ + ∆t

(df
dt

)∗
fn+1 =

1

2

(
fn + f∗∗

)
(4.14)

The second set can be shown to be equivalent to the first one by substituting the
second equation into the last one. The importance of the second form is that we can
take two first order time steps and then average the new and the old results. This
makes it particularly simple to extend our first order in time code to second order.
We simply store the results at the beginning of a step, take two steps and average the
new and old results. The only complication is that since this averaging includes the
front variables, we need to move the restructuring of the front to the very beginning
or the end of the time loop so that we average over the same front points.

4.4 Keeping Flows in Periodic Domains Station-
ary

For flows in domains that are periodic in the direction that gravity acts in, particularly
if the horizontal boundaries are also periodic, there is nothing holding the fluid region
in place and it will undergo free fall once gravity is turned on. The simplest way to
prevent this is to add a body force equal to the weight of the fluid region that opposes
the pull of gravity. Thus, we replace the pressure and gravity term by:

∇p+ ρg − ρavgg = ∇p+ (ρ− ρavg)g (4.15)

This can be shown to conserve momentum exactly (at least in theory) but if the fluid
gains momentum due to small error, there is nothing that reduces the momentum
back to what it should be. For simulations with periodic boundary conditions in all
directions, we therefore sometimes see a slight drift in the direction of gravity, unless
we explicitly correct for it.

4.5 More Complete Code

A code that is second order in time with surface tension and variable viscosity This
code can be downloaded from: code3.m

4.6 Results

Figure 4.2 shows the initial conditions and the results at three later times from the
code listed below. The drops is kept nearly cylindrical by surface tension, until it
boundless off the bottom wall.

http://www.nd.edu/~gtryggva/MultiphaseDNS/code3-frt-st.m

4.6. RESULTS 45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.2: The front and the velocity field at time zero and three later times.
In the last frame (lower right), the drop has bounced back and is falling again
to the wall.

46 CHAPTER 4. A MORE COMPLETE CODE

4.7 Exercises

1. Run the code for the three different grid resolutions (adjust the time step to keep
it stable, if needed) and compare the results. You can also compute the location
of the center of mass versus time and see how it depends on the resolution.

2. Examine the effect of changing the various parameters, such as the surface ten-
sion, density difference and viscosity and how the necessary resolution changes.

3. Rayleigh-Taylor Instability: Change the code to follow the evolution of a heavy
fluid overlaying a lighter one. Make the side boundaries full slip, by setting the
ghost tangential velocity equal to the velocity inside the domain, and change
the initial condition to an interface perturbed by a cos wave of amplitude 0.1
times the domain width. You can the change the density difference, the surface
tension and the viscosity to examine what effect these parameters have.

4. Modify the code to allow simulations of two bubbles. The simplest, although
not the most elegant, approach is to split the front loops into two parts and do
each bubble separately. Examine their interactions as they rise.

5. Modify the code to simulate the heat transfer from an initially hot drop. The
heat transfer is governed by

∂T

∂t
+ u · ∇T =

1

ρc
∇ · k∇T (4.16)

where T is the temperature, k is the thermal conductivity, and c is the heat
capacity. The temperature at the walls can be assumed to remain constant.

6. Make the surface tension a decreasing function of the temperature and simulate
the thermocapillary motion of a drop in a temperature gradient. You will have
to solve the energy equation (from the problem above) on the grid and then
interpolate the temperature onto the front points. When the surface tension is
variable, the surface force is given by fσ = ∂σt/∂s.

4.7. EXERCISES 47

%==

% code3.m

% A very simple Navier-Stokes solver for a drop falling in a rectangular

% box. A forward in time, centered in space discretization is used.

% The density is advected by a front tracking scheme and surface tension

% and variable viscosity is included

%==

%domain size and physical variables

Lx=1.0;Ly=1.0;gx=0.0;gy=100.0; rho1=1.0; rho2=2.0;

m1=0.01; m2=0.05; sigma=10; rro=rho1;

unorth=0;usouth=0;veast=0;vwest=0;time=0.0;

rad=0.15;xc=0.5;yc=0.7; % Initial drop size and location

% Numerical variables

nx=32;ny=32;dt=0.00125;nstep=300; maxit=200;maxError=0.001;beta=1.5;

% Zero various arrys

u=zeros(nx+1,ny+2); v=zeros(nx+2,ny+1); p=zeros(nx+2,ny+2);

ut=zeros(nx+1,ny+2); vt=zeros(nx+2,ny+1); tmp1=zeros(nx+2,ny+2);

uu=zeros(nx+1,ny+1); vv=zeros(nx+1,ny+1); tmp2=zeros(nx+2,ny+2);

fx=zeros(nx+2,ny+2); fy=zeros(nx+2,ny+2);

un=zeros(nx+1,ny+2); vn=zeros(nx+2,ny+1); % second order

% Set the grid

dx=Lx/nx;dy=Ly/ny;

for i=1:nx+2; x(i)=dx*(i-1.5);end; for j=1:ny+2; y(j)=dy*(j-1.5);end;

% Set density and viscosity in the domain and the drop

r=zeros(nx+2,ny+2)+rho1;m=zeros(nx+2,ny+2)+m1;

rn=zeros(nx+2,ny+2); mn=zeros(nx+2,ny+2); % second order

for i=2:nx+1,for j=2:ny+1;

if ((x(i)-xc)^2+(y(j)-yc)^2 < rad^2), r(i,j)=rho2;m(i,j)=m2;end,

end,end

%================== SETUP THE FRONT ===================

Nf=100; xf=zeros(1,Nf+2); yf=zeros(1,Nf+2);

xfn=zeros(1,Nf+2); yfn=zeros(1,Nf+2); % second order

uf=zeros(1,Nf+2); vf=zeros(1,Nf+2);

tx=zeros(1,Nf+2); ty=zeros(1,Nf+2);

for l=1:Nf+2, xf(l)=xc-rad*sin(2.0*pi*(l-1)/(Nf));

yf(l)=yc+rad*cos(2.0*pi*(l-1)/(Nf));end

%================== START TIME LOOP======================================

for is=1:nstep,is

un=u; vn=v; rn=r; mn=m; xfn=xf; yfn=yf; % second order%%%

for substep=1:2 % second order

%------------------ FIND SURFACE TENSION --------------

fx=zeros(nx+2,ny+2);fy=zeros(nx+2,ny+2); % Set fx & fy to zero

for l=1:Nf+1,

ds=sqrt((xf(l+1)-xf(l))^2+(yf(l+1)-yf(l))^2);

tx(l)=(xf(l+1)-xf(l))/ds;

ty(l)=(yf(l+1)-yf(l))/ds; % Tangent vectors

end

tx(Nf+2)=tx(2);ty(Nf+2)=ty(2);

for l=2:Nf+1 % Distribute to the fixed grid

48 CHAPTER 4. A MORE COMPLETE CODE

nfx=sigma*(tx(l)-tx(l-1));nfy=sigma*(ty(l)-ty(l-1));

ip=floor(xf(l)/dx)+1; jp=floor((yf(l)+0.5*dy)/dy)+1;

ax=xf(l)/dx-ip+1; ay=(yf(l)+0.5*dy)/dy-jp+1;

fx(ip,jp) =fx(ip,jp)+(1.0-ax)*(1.0-ay)*nfx/dx/dy;

fx(ip+1,jp) =fx(ip+1,jp)+ax*(1.0-ay)*nfx/dx/dy;

fx(ip,jp+1) =fx(ip,jp+1)+(1.0-ax)*ay*nfx/dx/dy;

fx(ip+1,jp+1)=fx(ip+1,jp+1)+ax*ay*nfx/dx/dy;

ip=floor((xf(l)+0.5*dx)/dx)+1; jp=floor(yf(l)/dy)+1;

ax=(xf(l)+0.5*dx)/dx-ip+1; ay=yf(l)/dy-jp+1;

fy(ip,jp) =fy(ip,jp)+(1.0-ax)*(1.0-ay)*nfy/dx/dy;

fy(ip+1,jp) =fy(ip+1,jp)+ax*(1.0-ay)*nfy/dx/dy;

fy(ip,jp+1) =fy(ip,jp+1)+(1.0-ax)*ay*nfy/dx/dy;

fy(ip+1,jp+1)=fy(ip+1,jp+1)+ax*ay*nfy/dx/dy;

end

%---

% tangential velocity at boundaries

u(1:nx+1,1)=2*usouth-u(1:nx+1,2);u(1:nx+1,ny+2)=2*unorth-u(1:nx+1,ny+1);

v(1,1:ny+1)=2*vwest-v(2,1:ny+1);v(nx+2,1:ny+1)=2*veast-v(nx+1,1:ny+1);

for i=2:nx,for j=2:ny+1 % TEMPORARY u-velocity-ADVECTION

ut(i,j)=u(i,j)+dt*(-0.25*(((u(i+1,j)+u(i,j))^2-(u(i,j)+ ...

u(i-1,j))^2)/dx+((u(i,j+1)+u(i,j))*(v(i+1,j)+ ...

v(i,j))-(u(i,j)+u(i,j-1))*(v(i+1,j-1)+v(i,j-1)))/dy)+ ...

fx(i,j)/(0.5*(r(i+1,j)+r(i,j))) ...

- (1.0 -rro/(0.5*(r(i+1,j)+r(i,j))))*gx);

end,end

for i=2:nx+1,for j=2:ny % TEMPORARY v-velocity-ADVECTION

vt(i,j)=v(i,j)+dt*(-0.25*(((u(i,j+1)+u(i,j))*(v(i+1,j)+ ...

v(i,j))-(u(i-1,j+1)+u(i-1,j))*(v(i,j)+v(i-1,j)))/dx+ ...

((v(i,j+1)+v(i,j))^2-(v(i,j)+v(i,j-1))^2)/dy)+ ...

fy(i,j)/(0.5*(r(i,j+1)+r(i,j))) ...

- (1.0 -rro/(0.5*(r(i,j+1)+r(i,j))))*gy);

end,end

for i=2:nx,for j=2:ny+1 % TEMPORARY u-velocity-DIFFUSION

ut(i,j)=ut(i,j)+dt*(...

(1./dx)*2.*(m(i+1,j)*(1./dx)*(u(i+1,j)-u(i,j)) - ...

m(i,j) *(1./dx)*(u(i,j)-u(i-1,j))) ...

+(1./dy)*(0.25*(m(i,j)+m(i+1,j)+m(i+1,j+1)+m(i,j+1))* ...

((1./dy)*(u(i,j+1)-u(i,j)) + (1./dx)*(v(i+1,j)-v(i,j))) - ...

0.25*(m(i,j)+m(i+1,j)+m(i+1,j-1)+m(i,j-1))* ...

((1./dy)*(u(i,j)-u(i,j-1))+ (1./dx)*(v(i+1,j-1)- v(i,j-1))))...

)/(0.5*(r(i+1,j)+r(i,j)));

end,end

for i=2:nx+1,for j=2:ny % TEMPORARY v-velocity-DIFFUSION

vt(i,j)=vt(i,j)+dt*(...

(1./dx)*(0.25*(m(i,j)+m(i+1,j)+m(i+1,j+1)+m(i,j+1))* ...

((1./dy)*(u(i,j+1)-u(i,j)) + (1./dx)*(v(i+1,j)-v(i,j))) - ...

0.25*(m(i,j)+m(i,j+1)+m(i-1,j+1)+m(i-1,j))* ...

((1./dy)*(u(i-1,j+1)-u(i-1,j))+ (1./dx)*(v(i,j)- v(i-1,j))))...

+(1./dy)*2.*(m(i,j+1)*(1./dy)*(v(i,j+1)-v(i,j)) - ...

m(i,j) *(1./dy)*(v(i,j)-v(i,j-1))) ...

)/(0.5*(r(i,j+1)+r(i,j)));

end,end

4.7. EXERCISES 49

%==

% Compute source term and the coefficient for p(i,j)

rt=r; lrg=1000;

rt(1:nx+2,1)=lrg;rt(1:nx+2,ny+2)=lrg;

rt(1,1:ny+2)=lrg;rt(nx+2,1:ny+2)=lrg;

for i=2:nx+1,for j=2:ny+1

tmp1(i,j)= (0.5/dt)*((ut(i,j)-ut(i-1,j))/dx+(vt(i,j)-vt(i,j-1))/dy);

tmp2(i,j)=1.0/((1./dx)*(1./(dx*(rt(i+1,j)+rt(i,j)))+...

1./(dx*(rt(i-1,j)+rt(i,j))))+...

(1./dy)*(1./(dy*(rt(i,j+1)+rt(i,j)))+...

1./(dy*(rt(i,j-1)+rt(i,j)))));

end,end

for it=1:maxit % SOLVE FOR PRESSURE

oldArray=p;

for i=2:nx+1,for j=2:ny+1

p(i,j)=(1.0-beta)*p(i,j)+beta* tmp2(i,j)*(...

(1./dx)*(p(i+1,j)/(dx*(rt(i+1,j)+rt(i,j)))+...

p(i-1,j)/(dx*(rt(i-1,j)+rt(i,j))))+...

(1./dy)*(p(i,j+1)/(dy*(rt(i,j+1)+rt(i,j)))+...

p(i,j-1)/(dy*(rt(i,j-1)+rt(i,j)))) - tmp1(i,j));

end,end

if max(max(abs(oldArray-p))) <maxError, break,end

end

for i=2:nx,for j=2:ny+1 % CORRECT THE u-velocity

u(i,j)=ut(i,j)-dt*(2.0/dx)*(p(i+1,j)-p(i,j))/(r(i+1,j)+r(i,j));

end,end

for i=2:nx+1,for j=2:ny % CORRECT THE v-velocity

v(i,j)=vt(i,j)-dt*(2.0/dy)*(p(i,j+1)-p(i,j))/(r(i,j+1)+r(i,j));

end,end

%================== ADVECT FRONT =====================

for l=2:Nf+1

ip=floor(xf(l)/dx)+1; jp=floor((yf(l)+0.5*dy)/dy)+1;

ax=xf(l)/dx-ip+1;ay=(yf(l)+0.5*dy)/dy-jp+1;

uf(l)=(1.0-ax)*(1.0-ay)*u(ip,jp)+ax*(1.0-ay)*u(ip+1,jp)+...

(1.0-ax)*ay*u(ip,jp+1)+ax*ay*u(ip+1,jp+1);

ip=floor((xf(l)+0.5*dx)/dx)+1; jp=floor(yf(l)/dy)+1;

ax=(xf(l)+0.5*dx)/dx-ip+1;ay=yf(l)/dy-jp+1;

vf(l)=(1.0-ax)*(1.0-ay)*v(ip,jp)+ax*(1.0-ay)*v(ip+1,jp)+...

(1.0-ax)*ay*v(ip,jp+1)+ax*ay*v(ip+1,jp+1);

end

for i=2:Nf+1, xf(i)=xf(i)+dt*uf(i); yf(i)=yf(i)+dt*vf(i);end %MOVE THE FRONT

xf(1)=xf(Nf+1);yf(1)=yf(Nf+1);xf(Nf+2)=xf(2);yf(Nf+2)=yf(2);

%------------ distribute gradient --------------

fx=zeros(nx+2,ny+2);fy=zeros(nx+2,ny+2); % Set fx & fy to zero

for l=2:Nf+1

nfx=-0.5*(yf(l+1)-yf(l-1))*(rho2-rho1);

nfy=0.5*(xf(l+1)-xf(l-1))*(rho2-rho1); % Normal vector

ip=floor(xf(l)/dx)+1; jp=floor((yf(l)+0.5*dy)/dy)+1;

ax=xf(l)/dx-ip+1; ay=(yf(l)+0.5*dy)/dy-jp+1;

fx(ip,jp) =fx(ip,jp)+(1.0-ax)*(1.0-ay)*nfx/dx/dy;

50 CHAPTER 4. A MORE COMPLETE CODE

fx(ip+1,jp) =fx(ip+1,jp)+ax*(1.0-ay)*nfx/dx/dy;

fx(ip,jp+1) =fx(ip,jp+1)+(1.0-ax)*ay*nfx/dx/dy;

fx(ip+1,jp+1)=fx(ip+1,jp+1)+ax*ay*nfx/dx/dy;

ip=floor((xf(l)+0.5*dx)/dx)+1; jp=floor(yf(l)/dy)+1;

ax=(xf(l)+0.5*dx)/dx-ip+1; ay=yf(l)/dy-jp+1;

fy(ip,jp) =fy(ip,jp)+(1.0-ax)*(1.0-ay)*nfy/dx/dy;

fy(ip+1,jp) =fy(ip+1,jp)+ax*(1.0-ay)*nfy/dx/dy;

fy(ip,jp+1) =fy(ip,jp+1)+(1.0-ax)*ay*nfy/dx/dy;

fy(ip+1,jp+1)=fy(ip+1,jp+1)+ax*ay*nfy/dx/dy;

end

%------------ construct the density --------------

for iter=1:maxit

oldArray=r;

for i=2:nx+1,for j=2:ny+1

r(i,j)=(1.0-beta)*r(i,j)+beta*...

0.25*(r(i+1,j)+r(i-1,j)+r(i,j+1)+r(i,j-1)+...

dx*fx(i-1,j)-dx*fx(i,j)+...

dy*fy(i,j-1)-dy*fy(i,j));

end,end

if max(max(abs(oldArray-r))) <maxError, break,end

end

%------------ update the viscosity --------------

m=zeros(nx+2,ny+2)+m1;

for i=2:nx+1,for j=2:ny+1

m(i,j)=m1+(m2-m1)*(r(i,j)-rho1)/(rho2-rho1);

end,end

end % end the time iteration---second order

u=0.5*(u+un); v=0.5*(v+vn); r=0.5*(r+rn); m=0.5*(m+mn); % second order

xf=0.5*(xf+xfn); yf=0.5*(yf+yfn); % second order

%------------ Add points to the front ------------

xfold=xf;yfold=yf; j=1;

for l=2:Nf+1

ds=sqrt(((xfold(l)-xf(j))/dx)^2 + ((yfold(l)-yf(j))/dy)^2);

if (ds > 0.5)

j=j+1;xf(j)=0.5*(xfold(l)+xf(j-1));yf(j)=0.5*(yfold(l)+yf(j-1));

j=j+1;xf(j)=xfold(l);yf(j)=yfold(l);

elseif (ds < 0.25)

% DO NOTHING!

else

j=j+1;xf(j)=xfold(l);yf(j)=yfold(l);

end

end

Nf=j-1;

xf(1)=xf(Nf+1);yf(1)=yf(Nf+1);xf(Nf+2)=xf(2);yf(Nf+2)=yf(2);

%==

time=time+dt % plot the results

uu(1:nx+1,1:ny+1)=0.5*(u(1:nx+1,2:ny+2)+u(1:nx+1,1:ny+1));

vv(1:nx+1,1:ny+1)=0.5*(v(2:nx+2,1:ny+1)+v(1:nx+1,1:ny+1));

for i=1:nx+1,xh(i)=dx*(i-1);end; for j=1:ny+1,yh(j)=dy*(j-1);end

hold off,contour(x,y,flipud(rot90(r))),axis equal,axis([0 Lx 0 Ly]);

hold on;quiver(xh,yh,flipud(rot90(uu)),flipud(rot90(vv)),’r’);

plot(xf(1:Nf),yf(1:Nf),’k’,’linewidth’,5);pause(0.01)

end

Chapter 5

More Advanced Code

The code introduced in the last chapter is a fully functional code and can be used to
examine a wide variety of problems (although only for two-dimensional flows). Here
we introduce two changes that fist of all allow us to use the grid points a little more
economically and to more easily simulate higher Reynolds number flows.

5.1 Stretched Grids

A regular structured uniform grid is relatively simple to implement and works for
problems where all parts of the domain need to be well resolved. Often, however,
we encounter situations where we would like the boundaries to be far away, or where
we would like to use a fine grid in part of the domain, such as near boundaries. As
it turns out, modifying the code described above to allow for unevenly spaced grid
lines is fairly simple. Each grid line remains straight so this is far from a general grid
refinement strategy but nevertheless, such stretched grids allow us to do a number of
problems that would require an excessive number of grid points if the grid spacing was
uniform. Figure 5.1 show a stretched grid where the resolution is concentrated near
the middle of the left boundary.

We start by mapping the physical domain (where the grid lines are unevenly
spaced) into a new domain where the grid lines are evenly spaced. The coordinates in
the physical domain are a function of the mapped coordinates:

x = x(ξ), y = y(η) (5.1)

Since x is a function of ξ and y is a function of ∆x only, writing the governing equations
in the new coordinate systems is much simpler then for a complete mapping where
each coordinate depends of both of the mapped coordinates. For our case, we have
f = f(x(ξ), y(η)) so the derivative is

∂f

∂ξ
=
∂f

∂x

∂x

∂ξ
(5.2)

or
∂f

∂x
=
∂f

∂ξ
/
∂x

∂ξ
(5.3)

51

52 CHAPTER 5. MORE ADVANCED CODE

Fine grid needed here!

Figure 5.1: A stretched grid where the gridlines are straight but unevenly
spaced. Here the grid is fine near the middle of the left boundary.

 !xi !xi+1

 !xi+1/2 !xi"1/2

 xi!1 xi xi+1 xi+2

 !xi+3/2

Figure 5.2: The notation for the x-axis.

Using a second order centered difference approximation for the changes in the x coor-
dinate with ξ gives

∂x

∂ξ
≈ ∆x

∆ξ
= ∆x (5.4)

if we take ∆ξ = 1. Since the total size of the domain in the mapped coordinates is
arbitrary, it is a common convention to take it equal to the total number of grid points,
so each grid line is separated by exactly unity. Thus, there is no need to divide by the
constant grid spacing in the mapped domain.

Since the grid lines are no longer uniformly spaced, we set up an an array with their
locations. Usually we specify the locations of the velocity points xi+1/2 and yj+1/2

since those will coincide with the boundaries of the domain and find the location of the
pressure points by interpolation: xi = (1/2)(xi+1/2−xi−1/2) and yj = (1/2)(xj+1/2−
yj−1/2). The grid spacings at the pressure and velocity point are then precomputed
by ∆xi = xi+1/2 − xi−1/2 and ∆xi+1/2 = xi − xi−1. For the y direction we have
∆yi = yj+1/2− yj−1/2 and ∆yj+1/2 = yj − yj−1. The notational convention, using the
x axis as an example, is shown in figure 5.2.

Developing numerical approximations for the governing equations on stretched grid
is therefore straight forward. Instead of using one universal ∆x (and ∆y) we must use
the local value. For completeness we list the numerical approximations below, even

5.1. STRETCHED GRIDS 53

though some of the equations heave been listed before and in other cases the changes
are relatively minimal.

We start with the Navier-Stokes equations for two-dimensional flows:

∂u

∂t
+
∂uu

∂x
+
∂uv

∂x
=
−1

ρ

∂p

∂x
+
(ρ0

ρ
− 1
)
gx +

1

ρ

(
∂

∂x
2µ
∂u

∂x
+

∂

∂y
µ
(∂u
∂y

+
∂v

∂x

)
+ fx

)
∂v

∂t
+
∂uv

∂x
+
∂vv

∂x
=
−1

ρ

∂p

∂y
+
(ρ0

ρ
− 1
)
gy +

1

ρ

(
∂

∂x
µ
(∂u
∂y

+
∂v

∂x

)
+

∂

∂y
2µ
∂v

∂y
+ fy

)
(5.5)

A numerical approximation for the velocities consist of a predictor step

u∗
i+1/2,j − uni+1/2,j

∆t
+ (Ax)ni+1/2,j =

+
1

1
2
(ρni+1,j + ρni,j)

[(
Dx
)n
i+1/2,j

+
(
ρo −

1

2
(ρni+1,j + ρni,j)

)
gx + (fx)ni+1/2,j

]
(5.6)

and

v∗i,j+1/2 − vni,j+1/2

∆t
+ (Ay)ni,j+1/2 =

(ρ0

1
2
(ρni,j+1 + ρni,j)

− 1
)
gy

+
1

1
2
(ρni,j+1 + ρni,j)

[
(Dy

)n
i,j+1/2

+ (fy)ni,j+1/2

]
. (5.7)

and a correction step

un+1
i+1/2,j − u

∗
i+1/2,j

∆t
=

1
1
2
(ρni+1,j + ρni,j)

pi+1,j − pi,j
∆xi+1/2

(5.8)

and

vn+1
i,j+1/2 − v

∗
i,j+1/2

∆t
=

1
1
2
(ρni,j+1 + ρni,j)

pi,j+1 − pi,j
∆yj+1/2

. (5.9)

The x-component of the advection, at (i+ 1/2, j), is given by

(Ax)i+1/2,j =

1

∆xi+1/2

{
(uu)i+1,j − (uu)i,j

}
+

1

∆yj

{
(uv)i+1/2,j+1/2 − (uv)i+1/2,j−1/2

}
=

1

∆xi+1/2

[(uni+3/2,j + uni+1/2,j

2

)2

−
(uni+1/2,j + uni−1/2,j

2

)2}
+

1

∆yj

{(uni+1/2,j+1 + uni+1/2,j

2

)(vni+1,j+1/2 + vni,j+1/2

2

)
−
(uni+1/2,j + uni+1/2,j−1

2

)(vni+1,j−1/2 + vni,j−1/2

2

)}
(5.10)

54 CHAPTER 5. MORE ADVANCED CODE

The y-component of the advection, at the (i, j + 1/2) point, is:

(Ay)i,j+1/2 =

1

∆xi

{
(uv)i+1/2,j+1/2 − (uv)i−1/2,j+1/2

}
+

1

∆yj+1/2

{
(vv)i,j+1 − (vv)i,j

}
.

=
1

∆xi

{(uni+1/2,j + uni+1/2,j+1

2

)(vni,j+1/2 + vni+1,j+1/2

2

)
−
(uni−1/2,j+1 + uni−1/2,j

2

)(vni,j+1/2 + vni−1,j+1/2

2

)}
+

1

∆yj+1/2

{(vni,j+3/2 + vni,j+1/2

2

)2

−
(vni,j+1/2 + vni,j−1/2

2

)2}
. (5.11)

The diffusion terms are:

(Dx)ni+1/2,j =

1

∆xi+1/2

{
2
(
µ
∂u

∂x

)
i+1,j

− 2
(
µ
∂u

∂x

)
i,j

}

+
1

∆yj

{(
µ
(∂u
∂y

+
∂v

∂x

))
i+1/2,j+1/2

−

(
µ
(∂u
∂y

+
∂v

∂x

))
i+1/2,j−1/2

}

=
1

∆xi+1/2

{
2µni+1,j

(uni+3/2,j − uni+1/2,j

∆xi+1

)
− 2µni,j

(uni+1/2,j − uni−1/2,j

∆xi

)}

+
1

∆yj

{
µni+1/2,j+1/2

(uni+1/2,j+1 − uni+1/2,j

∆yj+1/2

+
vni+1,j+1/2 − vni,j+1/2

∆xi+1/2

)
−µni+1/2,j−1/2

(uni+1/2,j − uni+1/2,j−1

∆yj−1/2

+
vni+1,j−1/2 − vni,j−1/2

∆xi+1/2

)}
(5.12)

(Dy)ni,j+1/2 =

1

∆xi

{(
µ
(∂v
∂x

+
∂u

∂y

))
i+1/2,j+1/2

−

(
µ
(∂v
∂x

+
∂u

∂y

))
i−1/2,j+1/2

}

+
1

∆yj+1/2

{
2
(
µ
∂v

∂y

)
i,j+1

− 2
(
µ
∂v

∂y

)
i,j

}

=
1

∆xi

{
µni+1/2,j+1/2

(uni+1/2,j+1 − uni+1/2,j

∆yj+1/2

+
vni+1,j+1/2 − vni,j+1/2

∆xi+1/2

)
−µni−1/2,j+1/2

(uni−1/2,j+1 − uni−1/2,j

∆yj+1/2

+
vni,j+1/2 − vni−1,j+1/2

∆xi−1/2

)}

+
1

∆yj+1/2

{
2µni,j+1

(vni,j+3/2 − vni,j+1/2

∆yj+1

)
− 2µni,j

(vni,j+1/2 − vni,j−1/2

∆yj

)}
. (5.13)

Where the viscosity at the points where it is not defined, is found by linear interpola-

5.1. STRETCHED GRIDS 55

tion:

µni+1/2,j+1/2 =
1

4
(µni+1,j + µni+1,j+1 + µni,j+1 + µni,j)

µni+1/2,j−1/2 =
1

4
(µni+1,j−1 + µni+1,j + µni,j + µni,j−1) (5.14)

µni−1/2,j+1/2 =
1

4
(µni,j + µni,j+1 + µni−1,j+1 + µni−1,j)

The incompressibility condition is

1

∆xi

(
un+1
i+1/2,j − u

n+1
i−1/2,j

)
+

1

∆yj

(
vn+1
i,j+1/2 − v

n+1
i,j−1/2

)
= 0 (5.15)

Substitution the equation for the correction velocities (equations 5.9 and 5.8) in to the
incompressibility conditions gives a pressure equation:

1

∆xi

{
1

1
2
(ρni+1,j + ρni,j)

(pi+1,j − pi,j
∆xi+1/2

)
− 1

1
2
(ρni,j + ρni−1,j)

(pi,j − pi−1,j

∆xi−1/2

)}

+
1

∆yj

{
1

1
2
(ρni,j+1 + ρni,j)

(pi,j+1 − pi,j
∆yj+1/2

)
− 1

1
2
(ρni,j + ρni,j−1)

(pi,j − pi,j−1

∆yj−1/2

)}

=
1

∆t

{
u∗
i+1/2,j − u∗

i−1/2,j

∆xi
+
v∗i,j+1/2 − v∗i,j−1/2

∆yj

}
(5.16)

Defining

Si,j =
u∗
i+1/2,j − u∗

i−1/2,j

∆xi
+
v∗i,j+1/2 − v∗i,j−1/2

∆yj
(5.17)

and

Ci,j =
1

∆xi

{
1

1
2
(ρni+1,j + ρni,j)

(1

∆xi+1/2

)
− 1

1
2
(ρni,j + ρni−1,j)

(1

∆xi−1/2

)}

+
1

∆yj

{
1

1
2
(ρni,j+1 + ρni,j)

(1

∆yj+1/2

)
−+

1
1
2
(ρni,j + ρni,j−1)

(1

∆yj−1/2

)}
(5.18)

we can rewrite the pressure equation as

pi,jCi,j =
1

∆xi

{
1

1
2
(ρni+1,j + ρni,j)

(pi+1,j

∆xi+1/2

)
+

1
1
2
(ρni,j + ρni−1,j)

(pi−1,j

∆xi−1/2

)}

+
1

∆yj

{
1

1
2
(ρni,j+1 + ρni,j)

(pi,j+1

∆yj+1/2

)
+

1
1
2
(ρni,j + ρni,j−1)

(pi,j−1

∆yj−1/2

)}
− Si,j

∆t
(5.19)

which can be solved by iteration.

5.1.1 Advecting the Front

The main challenge in coupling the front and the stretched grid is how to find the fixed
grid points that are closest to a given front point. For grids with a fixed spacing this is
straight forward since there is a direct relation between a spatial location. For uneven
grid spacing this relationship does not exist. However, if we know the coordinate of

56 CHAPTER 5. MORE ADVANCED CODE

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

x

A=2.5 x=1

Figure 5.3: A simple mapping function to generate a well resolved internal
region.

a front point in the mapped domain, the direct relationship is restored. We therefore
store the location of the front points in the mapped domain, called sxf (l) and syf(l)
in the code below, and advect the front by updating these coordinates. To find the
physical coordinates of each front point, we then interpolate from the fixed grid. The
velocities on the fixed grids are the rate at which a fluid particle moves in physical
space so we need to relate the motion of a front point in the mapped domain to the
physical velocity. This is easily done since

u =
∂x

∂t
=
∂x

∂ξ

∂ξ

∂t
. (5.20)

Thus,
∂ξ

∂t
=

u

∂x/∂ξ
≈ u

∆x
, (5.21)

and a similar expression for the v velocity. Thus, when the velocity is interpolated
from the fixed grid to the front, we interpolate ui,j/∆xi and vi,j/∆yj rather than
(ui,j , vi,j) as we do for the evenly spaced grid.

When interpolating information from the fixed grid to the front and smoothing
information from the front to the fixed grid, we need to use the size of the grid spacing
at the point we are working with. Point addition and deletion is done in the mapped
space, but all other operations on the front itself take place in the physical coordinates
and are unchanged.

5.1.2 Grid Generation

There are many ways to set the distribution of gridlines across the computational do-
main. The task is to find a mapping x = x(ξ) that results in the desired distribution of
grid lines. Here we will use a particularly simple approach and use a cubic polynomial
to map the gridlines from an equispaced distribution to one where we cluster the lines

5.1. STRETCHED GRIDS 57

in specific regions. The mapping function does not need to be an analytical function
but using one makes laying down the gridlines simple. Since the grid lines have to
cover the computational domain, we select a function that is equal to 0 at ξ = 0 and
L at ξ = 1. A linear mapping, x = Lξ/ accomplishes this task but results in evenly
spaced grid lines. To make the mapping nonlinear we add a function that is zero at
the endpoints to the line. x(ξ)/L = ξ + f(ξ) ∗ ξ ∗ (1 − ξ) does so. The function f(ξ)
can be selected in many ways. In general we will want it to change sign somewhere in
the domain and taking f(ξ) = ±(ξc–ξ) ensure that it does so at ξ = ξc. At ξc we have
x/L = ξ, since f(ξ) = 0, so ξc = Lxc there. Thus, our complete mapping function is
(multiplying through by L):

x(ξ) = Lξ +Aξ(1− ξ)(xc − Lξ) (5.22)

where A can be positive or Negative.
In figure 5.3 we plot x = x(ξ) for a 1 ≤ x ≤ 2 domain mapped onto 1 ≤ ξ ≤ 1

domain using A = 2.5 and xc = 1. Notice that A > 0 results in grid points clustered
inside the domain around x = xc and A < 0 produces a grid with points clustered
near the walls, with the grid being coarsest around x = xc.

5.1.3 Stretched Grid Code

This code can be downloaded from: code4.m

LOOKS LIKE THIS CODE IS ONLY FIRST ORDER!!!!!

%==

% code4.m

% A very simple Navier-Stokes solver for a drop falling in a rectangular

% box. A forward in time, centered in space discretization is used.

% The density is advected by a front tracking scheme and a stretched grid

% is used, allowing us to concentrate the grid points in specific areas

%==

%domain size and physical variables

Lx=1.0;Ly=1.0;gx=0.0;gy=100.0; rho1=1.0; rho2=2.0;

m1=0.01; m2=0.05; sigma=10; rro=rho1;

un=0;us=0;ve=0;vw=0;time=0.0;

rad=0.15;xc=0.5;yc=0.7; % Initial drop size and location

% Numerical variables

nx=32;ny=32;dt=0.00125;nstep=300;maxit=2000;maxError=0.0001;beta=1.5;

dx=Lx/nx;dy=Ly/ny;

% Zero various arrys

u=zeros(nx+1,ny+2); v=zeros(nx+2,ny+1); p=zeros(nx+2,ny+2);

ut=zeros(nx+1,ny+2); vt=zeros(nx+2,ny+1); tmp1=zeros(nx+2,ny+2);

uu=zeros(nx+1,ny+1); vv=zeros(nx+1,ny+1); tmp2=zeros(nx+2,ny+2);

fx=zeros(nx+2,ny+2); fy=zeros(nx+2,ny+2);

dk=zeros(1,nx+2); dl=zeros(1,ny+2); dkh=zeros(1,nx+1); dlh=zeros(1,ny+1);

% Set the stretched grid

for i=1:nx+2,s=Lx*(i-1.5)/(nx); x(i)=1.5*s*(0.5-s)*(1-s)+s;end;

for j=1:ny+2,s=Ly*(j-1.5)/(ny); y(j)=1.5*s*(0.5-s)*(1-s)+s;end;

for i=1:nx+1, xh(i)=0.5*(x(i+1)+x(i));end;

for j=1:ny+1, yh(j)=0.5*(y(j+1)+y(j));end

for i=1:nx+1,dkh(i)=x(i+1)-x(i);end;

for j=1:ny+1,dlh(j)=y(j+1)-y(j);end;

http://www.nd.edu/~gtryggva/MultiphaseDNS/code4-strgrd.m

58 CHAPTER 5. MORE ADVANCED CODE

for i=2:nx+1,dk(i)=xh(i)-xh(i-1);end;

for j=2:ny+1,dl(j)=yh(j)-yh(j-1);end;

dk(1)=dk(2);dk(nx+2)=dk(nx+1); dl(1)=dl(2);dl(ny+2)=dl(ny+1);

% Set density and viscosity in the domain and the drop

r=zeros(nx+2,ny+2)+rho1;m=zeros(nx+2,ny+2)+m1;

for i=2:nx+1,for j=2:ny+1;

if ((x(i)-xc)^2+(y(j)-yc)^2 < rad^2), r(i,j)=rho2;m(i,j)=m2;end,

end,end

%================== SETUP THE FRONT ===================

Nf=100; xf=zeros(1,Nf+2);yf=zeros(1,Nf+2);

uf=zeros(1,Nf+2);vf=zeros(1,Nf+2);

tx=zeros(1,Nf+2);ty=zeros(1,Nf+2);

for l=1:Nf+2, xf(l)=xc-rad*sin(2.0*pi*(l-1)/(Nf));

yf(l)=yc+rad*cos(2.0*pi*(l-1)/(Nf));end

%------------find the mapped front coordinates--------

sxf=zeros(1,Nf+2);syf=zeros(1,Nf+2);

for l=1:Nf+2,

for i=1:nx+1

if xf(l) > x(i+1), % DO NOTHING

else

sxf(l)=i*(x(i+1)-xf(l))/dkh(i)+(i+1)*(xf(l)-x(i))/dkh(i);break

end

end

for j=1:ny+1

if yf(l) >= y(j+1), % DO NOTHING

else

syf(l)=j*(y(j+1)-yf(l))/dlh(j)+(j+1)*(yf(l)-y(j))/dlh(j);break

end

end

end

%================== START TIME LOOP======================================

for is=1:nstep,is

%------------------ FIND SURFACE TENSION --------------

fx=zeros(nx+2,ny+2);fy=zeros(nx+2,ny+2); % Set fx & fy to zero

for l=1:Nf+1,

ds=sqrt((xf(l+1)-xf(l))^2+(yf(l+1)-yf(l))^2);

tx(l)=(xf(l+1)-xf(l))/ds;

ty(l)=(yf(l+1)-yf(l))/ds; % Tangent vectors

end

tx(Nf+2)=tx(2);ty(Nf+2)=ty(2);

for l=2:Nf+1

nfx=sigma*(tx(l)-tx(l-1));nfy=sigma*(ty(l)-ty(l-1));

ip=floor(sxf(l)-0.5);jp=floor(syf(l));

ax=sxf(l)-0.5-ip;ay=syf(l)-jp;

fx(ip,jp) =fx(ip,jp)+(1.0-ax)*(1.0-ay)*nfx/dkh(ip)/dl(jp);

fx(ip+1,jp) =fx(ip+1,jp)+ax*(1.0-ay)*nfx/dkh(ip+1)/dl(jp);

fx(ip,jp+1) =fx(ip,jp+1)+(1.0-ax)*ay*nfx/dkh(ip)/dl(jp+1);

fx(ip+1,jp+1)=fx(ip+1,jp+1)+ax*ay*nfx/dkh(ip+1)/dl(jp+1);

ip=floor(sxf(l));jp=floor(syf(l)-0.5);

ax=sxf(l)-ip;ay=syf(l)-0.5-jp;

fy(ip,jp) =fy(ip,jp)+(1.0-ax)*(1.0-ay)*nfy/dk(ip)/dlh(jp);

fy(ip+1,jp) =fy(ip+1,jp)+ax*(1.0-ay)*nfy/dk(ip+1)/dlh(jp);

5.1. STRETCHED GRIDS 59

fy(ip,jp+1) =fy(ip,jp+1)+(1.0-ax)*ay*nfy/dk(ip)/dlh(jp+1);

fy(ip+1,jp+1)=fy(ip+1,jp+1)+ax*ay*nfy/dk(ip+1)/dlh(jp+1);

end

%---

% tangential velocity at boundaries

u(1:nx+1,1)=2*us-u(1:nx+1,2);u(1:nx+1,ny+2)=2*un-u(1:nx+1,ny+1);

v(1,1:ny+1)=2*vw-v(2,1:ny+1);v(nx+2,1:ny+1)=2*ve-v(nx+1,1:ny+1);

for i=2:nx,for j=2:ny+1 % TEMPORARY u-velocity-ADVECTION

ut(i,j)=u(i,j)+dt*(-0.25*(((u(i+1,j)+u(i,j))^2-(u(i,j)+ ...

u(i-1,j))^2)/dkh(i)+((u(i,j+1)+u(i,j))*(v(i+1,j)+ ...

v(i,j))-(u(i,j)+u(i,j-1))*(v(i+1,j-1)+v(i,j-1)))/dl(j))+ ...

fx(i,j)/(0.5*(r(i+1,j)+r(i,j))) ...

- (1.0 -rro/(0.5*(r(i+1,j)+r(i,j))))*gx);

end,end

for i=2:nx+1,for j=2:ny % TEMPORARY v-velocity-ADVECTION

vt(i,j)=v(i,j)+dt*(-0.25*(((u(i,j+1)+u(i,j))*(v(i+1,j)+ ...

v(i,j))-(u(i-1,j+1)+u(i-1,j))*(v(i,j)+v(i-1,j)))/dk(i)+ ...

((v(i,j+1)+v(i,j))^2-(v(i,j)+v(i,j-1))^2)/dlh(j))+ ...

fy(i,j)/(0.5*(r(i,j+1)+r(i,j))) ...

- (1.0 -rro/(0.5*(r(i,j+1)+r(i,j))))*gy);

end,end

for i=2:nx,for j=2:ny+1 % TEMPORARY u-velocity-DIFFUSION

ut(i,j)=ut(i,j)+dt*(...

(1./dkh(i))*2.*(m(i+1,j)*(1./dk(i+1))*(u(i+1,j)-u(i,j)) - ...

m(i,j) *(1./dk(i))*(u(i,j)-u(i-1,j))) ...

+(1./dl(j))*(0.25*(m(i,j)+m(i+1,j)+m(i+1,j+1)+m(i,j+1))* ...

((1./dlh(j))*(u(i,j+1)-u(i,j)) + (1./dkh(i))*(v(i+1,j)-v(i,j))) - ...

0.25*(m(i,j)+m(i+1,j)+m(i+1,j-1)+m(i,j-1))* ...

((1./dlh(j-1))*(u(i,j)-u(i,j-1))+ (1./dkh(i-1))*(v(i+1,j-1)- v(i,j-1))))...

)/(0.5*(r(i+1,j)+r(i,j)));

end,end

for i=2:nx+1,for j=2:ny % TEMPORARY v-velocity-DIFFUSION

vt(i,j)=vt(i,j)+dt*(...

(1./dk(i))*(0.25*(m(i,j)+m(i+1,j)+m(i+1,j+1)+m(i,j+1))* ...

((1./dlh(j))*(u(i,j+1)-u(i,j)) + (1./dkh(i))*(v(i+1,j)-v(i,j))) - ...

0.25*(m(i,j)+m(i,j+1)+m(i-1,j+1)+m(i-1,j))* ...

((1./dlh(j))*(u(i-1,j+1)-u(i-1,j))+ (1./dkh(i-1))*(v(i,j)- v(i-1,j))))...

+(1./dlh(j))*2.*(m(i,j+1)*(1./dl(j+1))*(v(i,j+1)-v(i,j)) - ...

m(i,j) *(1./dl(j))*(v(i,j)-v(i,j-1))) ...

)/(0.5*(r(i,j+1)+r(i,j)));

end,end

%==

% Compute source term and the coefficient for p(i,j)

rt=r; lrg=1000;

rt(1:nx+2,1)=lrg;rt(1:nx+2,ny+2)=lrg;

rt(1,1:ny+2)=lrg;rt(nx+2,1:ny+2)=lrg;

for i=2:nx+1,for j=2:ny+1

tmp1(i,j)= (0.5/dt)*((ut(i,j)-ut(i-1,j))/dk(i)+(vt(i,j)-vt(i,j-1))/dl(j));

tmp2(i,j)=1.0/((1./dk(i))*(1./(dkh(i)*(rt(i+1,j)+rt(i,j)))+...

1./(dkh(i-1)*(rt(i-1,j)+rt(i,j))))+...

(1./dl(j))*(1./(dlh(j)*(rt(i,j+1)+rt(i,j)))+...

1./(dlh(j-1)*(rt(i,j-1)+rt(i,j)))));

end,end

60 CHAPTER 5. MORE ADVANCED CODE

5.1. STRETCHED GRIDS 61

for it=1:maxit % SOLVE FOR PRESSURE

oldArray=p;

for i=2:nx+1,for j=2:ny+1

p(i,j)=(1.0-beta)*p(i,j)+beta* tmp2(i,j)*(...

(1./dk(i))*(p(i+1,j)/(dkh(i)*(rt(i+1,j)+rt(i,j)))+...

p(i-1,j)/(dkh(i-1)*(rt(i-1,j)+rt(i,j))))+...

(1./dl(j))*(p(i,j+1)/(dlh(j)*(rt(i,j+1)+rt(i,j)))+...

p(i,j-1)/(dlh(j-1)*(rt(i,j-1)+rt(i,j)))) - tmp1(i,j));

end,end

if max(max(abs(oldArray-p))) <maxError, break,end

end

for i=2:nx,for j=2:ny+1 % CORRECT THE u-velocity

u(i,j)=ut(i,j)-dt*(2.0/dkh(i))*(p(i+1,j)-p(i,j))/(r(i+1,j)+r(i,j));

end,end

for i=2:nx+1,for j=2:ny % CORRECT THE v-velocity

v(i,j)=vt(i,j)-dt*(2.0/dlh(j))*(p(i,j+1)-p(i,j))/(r(i,j+1)+r(i,j));

end,end

%================== ADVECT FRONT =====================

for l=2:Nf+1

ip=floor(sxf(l)-0.5);jp=floor(syf(l)); ax=sxf(l)-0.5-ip;ay=syf(l)-jp;

uf(l)=(1.0-ax)*(1.0-ay)*u(ip,jp)/dkh(ip)+ax*(1.0-ay)*u(ip+1,jp)/dkh(ip+1)+...

(1.0-ax)*ay*u(ip,jp+1)/dkh(ip)+ax*ay*u(ip+1,jp+1)/dkh(ip+1);

ip=floor(sxf(l));jp=floor(syf(l)-0.5); ax=sxf(l)-ip;ay=syf(l)-0.5-jp;

vf(l)=(1.0-ax)*(1.0-ay)*v(ip,jp)/dlh(jp)+ax*(1.0-ay)*v(ip+1,jp)/dlh(jp)+...

(1.0-ax)*ay*v(ip,jp+1)/dlh(jp+1)+ax*ay*v(ip+1,jp+1)/dlh(jp+1);

end

for i=2:Nf+1, sxf(i)=sxf(i)+dt*uf(i); syf(i)=syf(i)+dt*vf(i);end %MOVE THE FRONT

sxf(1)=sxf(Nf+1);syf(1)=syf(Nf+1);sxf(Nf+2)=sxf(2);syf(Nf+2)=syf(2);

%------------ Add points to the front ------------

sxfold=sxf;syfold=syf; j=1;

for l=2:Nf+1

ds=sqrt((sxfold(l)-sxf(j))^2 + (syfold(l)-syf(j))^2);

if (ds > 0.5)

j=j+1;sxf(j)=0.5*(sxfold(l)+sxf(j-1));syf(j)=0.5*(syfold(l)+syf(j-1));

j=j+1;sxf(j)=sxfold(l);syf(j)=syfold(l);

elseif (ds < 0.25)

% DO NOTHING!

else

j=j+1;sxf(j)=sxfold(l);syf(j)=syfold(l);

end

end

Nf=j-1;

sxf(1)=sxf(Nf+1);syf(1)=syf(Nf+1);sxf(Nf+2)=sxf(2);syf(Nf+2)=syf(2);

%-----------find the coordinates in real space-------------

for l=2:Nf+1

ip=floor(sxf(l));jp=floor(syf(l));

xf(l)=(ip+1-sxf(l))*x(ip)+(sxf(l)-ip)*x(ip+1);

yf(l)=(jp+1-syf(l))*y(jp)+(syf(l)-jp)*y(jp+1);

end

xf(1)=xf(Nf+1);yf(1)=yf(Nf+1);xf(Nf+2)=xf(2);yf(Nf+2)=yf(2);

%------------ distribute gradient --------------

fx=zeros(nx+2,ny+2);fy=zeros(nx+2,ny+2); % Set fx & fy to zero

62 CHAPTER 5. MORE ADVANCED CODE

for l=2:Nf+1

nfx=-0.5*(yf(l+1)-yf(l-1))*(rho2-rho1);

nfy=0.5*(xf(l+1)-xf(l-1))*(rho2-rho1); % Normal vector

ip=floor(sxf(l)-0.5);jp=floor(syf(l));

ax=sxf(l)-0.5-ip;ay=syf(l)-jp;

fx(ip,jp) =fx(ip,jp)+(1.0-ax)*(1.0-ay)*nfx/dkh(ip)/dl(jp);

fx(ip+1,jp) =fx(ip+1,jp)+ax*(1.0-ay)*nfx/dkh(ip+1)/dl(jp);

fx(ip,jp+1) =fx(ip,jp+1)+(1.0-ax)*ay*nfx/dkh(ip)/dl(jp+1);

fx(ip+1,jp+1)=fx(ip+1,jp+1)+ax*ay*nfx/dkh(ip+1)/dl(jp+1);

ip=floor(sxf(l));jp=floor(syf(l)-0.5);

ax=sxf(l)-ip;ay=syf(l)-0.5-jp;

fy(ip,jp) =fy(ip,jp)+(1.0-ax)*(1.0-ay)*nfy/dk(ip)/dlh(jp);

fy(ip+1,jp) =fy(ip+1,jp)+ax*(1.0-ay)*nfy/dk(ip+1)/dlh(jp);

fy(ip,jp+1) =fy(ip,jp+1)+(1.0-ax)*ay*nfy/dk(ip)/dlh(jp+1);

fy(ip+1,jp+1)=fy(ip+1,jp+1)+ax*ay*nfy/dk(ip+1)/dlh(jp+1);

end

%------------ construct the density --------------

for iter=1:maxit

oldArray=r;

for i=2:nx+1,for j=2:ny+1

r(i,j)=(1.0-beta)*r(i,j)+beta*0.25*...

(r(i+1,j)+r(i-1,j)+r(i,j+1)+r(i,j-1)+...

dkh(i-1)*fx(i-1,j)-dkh(i)*fx(i,j)+...

dlh(j-1)*fy(i,j-1)-dlh(j)*fy(i,j));

end,end

if max(max(abs(oldArray-r))) <maxError, break,end

end

%------------ update the viscosity --------------

m=zeros(nx+2,ny+2)+m1;

for i=2:nx+1,for j=2:ny+1

m(i,j)=m1+(m2-m1)*(r(i,j)-rho1)/(rho2-rho1);

end,end

%==

time=time+dt % plot the results

uu(1:nx+1,1:ny+1)=0.5*(u(1:nx+1,2:ny+2)+u(1:nx+1,1:ny+1));

vv(1:nx+1,1:ny+1)=0.5*(v(2:nx+2,1:ny+1)+v(1:nx+1,1:ny+1));

hold off,contour(x,y,flipud(rot90(r))),axis equal,axis([0 Lx 0 Ly]);

hold on;quiver(xh,yh,flipud(rot90(uu)),flipud(rot90(vv)),’r’);

plot(xf(1:Nf),yf(1:Nf),’k’,’linewidth’,5);pause(0.01)

end

5.1.4 Results

5.2. ADVECTION BY ENO 63

Figure 5.4: The interpolation used by ENO.

5.2 Advection by ENO

The centered difference advection scheme used so far is unstable in the absence of
viscous diffusion and as the viscosity becomes smaller, we need to take smaller and
smaller time steps to allow diffusion to stabilize it. Furthermore, although it is very
accurate for fully resolved flows, it falls apart rapidly if the resolution is marginal. As
the viscosity is reduced, the likelihood of small and poorly resolved scales increases so
the centered difference scheme typically is not a good choice for high Reynolds number
flows.

Here we introduce a more robust advection scheme whose stability is controlled
only by the flow velocity and the grid size (|u|max∆t ≤ (∆x,∆y)min) and who is
more robust for low viscosity flow. Several such schemes exist, but we use a simple
second-order Runge-Kutta/ENO introduced by [?].

THE FOLLOWING NEEDS TO BE UPDATED. We first rewrite the advection
part of the momentum equations as φt = Lφ. Assuming that φni,j and uni,j are valid
discrete values defined at t = tn, x = xi, and y = yj , we advance the solution to
t = tn+1 by first finding a predicted value for the level set function

φ∗
i,j = φni,j + ∆tLφn (5.23)

and then correcting the solution by

φn+1
i,j = φni,j +

∆t

2
(Lφn + Lφ∗). (5.24)

The operator Lφ is discretized by

Lφ = −ui,j
φi+1/2,j − φi−1/2,j

∆x
− vi,j

φi,j+1/2 − φi,j−1/2

∆y
, (5.25)

where the value of φ at the cell boundaries is found by

φi+1/2,j =

{
φi,j + 1

2
M(D+

x φi,j , D
−
x φi,j),

1
2
(ui+1,j + ui,j) > 0

φi+1,j − 1
2
M(D+

x φi+1,j , D
−
x φi+1,j),

1
2
(ui+1,j + ui,j) < 0.

(5.26)

64 CHAPTER 5. MORE ADVANCED CODE

M is a switch defined by

M(a, b) =

{
a, |a| < |b|
b, |b| ≤ |a| =

1

2

[
(a− b) sign(|a| − |b|) + a+ b

]
(5.27)

and the differences are found by

D+
x φi,j = φi+1,j − φi,j

D−
x φi,j = φi,j − φi−1,j . (5.28)

The equation for φi,j+1/2 is similar.

5.3 Advecting the Front Across Periodic Bound-
aries

FROM TSZ—NEEDS TO BE UPDATED In many cases we wish to simulate periodic
domains where the front can move out of the domain on one side and reappear in
through the other side. This can be done in a very simple way by recognizing that
there is no need for the front to occupy the same period as the fixed grid. All that is
needed is to correctly identify the grid point that corresponds to a given front position.
A slight modification of the operation in chapter 2 accomplishes this:

i = FLOOR (MOD(xf , Lx)×Nx/Lx) . (5.29)

Here MOD(A,B) is an operation that gives the remainder after A has been divided
by B. For closed fronts, such as those representing the surface of a bubble or a drop,
nothing else needs to be changed. For periodic fronts, the end point in one period
is connected to the first point in the next period, but only one period is actually
computed. When computing the length of such elements, or a curve is fitted through
the end points, it is therefore necessary to correct for the positions of the points in the
next period.

5.3.1 Stretched Grid plus ENO Code

This code can be downloaded from: code5.m. We also need the minabs.m function

http://www.nd.edu/~gtryggva/MultiphaseDNS/code5-strgrd+ENO.m
http://www.nd.edu/~gtryggva/MultiphaseDNS/minabs.m

5.3. ADVECTING THE FRONT ACROSS PERIODIC BOUNDARIES 65

LOOKS LIKE THIS CODE IS ONLY FIRST ORDER!!!!!

%==

% A very simple Navier-Stokes solver for a drop falling in a rectangular

% box. A forward in time, centered in space discretization is used.

% The density is advected by a front tracking scheme.

% This version uses a stretched grid and ENO for the advection

%==

%domain size and physical variables

Lx=1.0;Ly=1.0;gx=0.0;gy=100.0; rho1=1.0; rho2=2.0;

m1=0.01; m2=0.05; sigma=10; rro=rho1;

un=0;us=0;ve=0;vw=0;time=0.0;

rad=0.15;xc=0.5;yc=0.7; % Initial drop size and location

% Numerical variables

nx=32;ny=32;dt=0.00125;nstep=300;maxit=200;maxError=0.001;beta=1.2;

% Zero various arrys

u=zeros(nx+1,ny+2); v=zeros(nx+2,ny+1); p=zeros(nx+2,ny+2);

ut=zeros(nx+1,ny+2); vt=zeros(nx+2,ny+1); tmp1=zeros(nx+2,ny+2);

uu=zeros(nx+1,ny+1); vv=zeros(nx+1,ny+1); tmp2=zeros(nx+2,ny+2);

fx=zeros(nx+2,ny+2); fy=zeros(nx+2,ny+2);

dk=zeros(1,nx+2); dl=zeros(1,ny+2); dkh=zeros(1,nx+1); dlh=zeros(1,ny+1);

ux=zeros(nx+2,ny+2); uy=zeros(nx+2,ny+2);

vx=zeros(nx+2,ny+2); vy=zeros(nx+2,ny+2);

% Set the stretched grid

for i=1:nx+2, s=Lx*(i-1.5)/(nx); x(i)=1.5*s*(0.5-s)*(1-s)+s; end;

for j=1:ny+2, s=Ly*(j-1.5)/(ny); y(j)=1.5*s*(0.5-s)*(1-s)+s; end;

for i=1:nx+1, xh(i)=0.5*(x(i+1)+x(i)); end;

for j=1:ny+1, yh(j)=0.5*(y(j+1)+y(j)); end

for i=1:nx+1, dkh(i)=x(i+1)-x(i); end;

for j=1:ny+1, dlh(j)=y(j+1)-y(j); end;

for i=2:nx+1, dk(i)=xh(i)-xh(i-1); end;

for j=2:ny+1, dl(j)=yh(j)-yh(j-1); end;

dk(1)=dk(2);dk(nx+2)=dk(nx+1); dl(1)=dl(2);dl(ny+2)=dl(ny+1);

% Set density and viscosity in the domain and the drop

r=zeros(nx+2,ny+2)+rho1;m=zeros(nx+2,ny+2)+m1;

for i=2:nx+1,for j=2:ny+1;

if ((x(i)-xc)^2+(y(j)-yc)^2 < rad^2), r(i,j)=rho2;m(i,j)=m2; end,

end,end

%================== SETUP THE FRONT ===================

Nf=100; xf=zeros(1,Nf+2);yf=zeros(1,Nf+2);

uf=zeros(1,Nf+2);vf=zeros(1,Nf+2);

tx=zeros(1,Nf+2);ty=zeros(1,Nf+2);

for l=1:Nf+2, xf(l)=xc-rad*sin(2.0*pi*(l-1)/(Nf));

yf(l)=yc+rad*cos(2.0*pi*(l-1)/(Nf));end

%------------find the mapped front coordinates--------

sxf=zeros(1,Nf+2);syf=zeros(1,Nf+2);

for l=1:Nf+2,

for i=1:nx+1

if xf(l) > x(i+1), % DO NOTHING

else

sxf(l)=i*(x(i+1)-xf(l))/dkh(i)+(i+1)*(xf(l)-x(i))/dkh(i);break

66 CHAPTER 5. MORE ADVANCED CODE

end

end

for j=1:ny+1

if yf(l) >= y(j+1), % DO NOTHING

else

syf(l)=j*(y(j+1)-yf(l))/dlh(j)+(j+1)*(yf(l)-y(j))/dlh(j);break

end

end

end

%================== START TIME LOOP======================================

for is=1:nstep,is

%------------------ FIND SURFACE TENSION --------------

fx=zeros(nx+2,ny+2);fy=zeros(nx+2,ny+2); % Set fx & fy to zero

for l=1:Nf+1,

ds=sqrt((xf(l+1)-xf(l))^2+(yf(l+1)-yf(l))^2);

tx(l)=(xf(l+1)-xf(l))/ds;

ty(l)=(yf(l+1)-yf(l))/ds; % Tangent vectors

end

tx(Nf+2)=tx(2);ty(Nf+2)=ty(2);

for l=2:Nf+1

nfx=sigma*(tx(l)-tx(l-1));nfy=sigma*(ty(l)-ty(l-1));

ip=floor(sxf(l)-0.5);jp=floor(syf(l));

ax=sxf(l)-0.5-ip;ay=syf(l)-jp;

fx(ip,jp) =fx(ip,jp)+(1.0-ax)*(1.0-ay)*nfx/dkh(ip)/dl(jp);

fx(ip+1,jp) =fx(ip+1,jp)+ax*(1.0-ay)*nfx/dkh(ip+1)/dl(jp);

fx(ip,jp+1) =fx(ip,jp+1)+(1.0-ax)*ay*nfx/dkh(ip)/dl(jp+1);

fx(ip+1,jp+1)=fx(ip+1,jp+1)+ax*ay*nfx/dkh(ip+1)/dl(jp+1);

ip=floor(sxf(l));jp=floor(syf(l)-0.5);

ax=sxf(l)-ip;ay=syf(l)-0.5-jp;

fy(ip,jp) =fy(ip,jp)+(1.0-ax)*(1.0-ay)*nfy/dk(ip)/dlh(jp);

fy(ip+1,jp) =fy(ip+1,jp)+ax*(1.0-ay)*nfy/dk(ip+1)/dlh(jp);

fy(ip,jp+1) =fy(ip,jp+1)+(1.0-ax)*ay*nfy/dk(ip)/dlh(jp+1);

fy(ip+1,jp+1)=fy(ip+1,jp+1)+ax*ay*nfy/dk(ip+1)/dlh(jp+1);

end

%---

% tangential velocity at boundaries

u(1:nx+1,1)=2*us-u(1:nx+1,2);u(1:nx+1,ny+2)=2*un-u(1:nx+1,ny+1);

v(1,1:ny+1)=2*vw-v(2,1:ny+1);v(nx+2,1:ny+1)=2*ve-v(nx+1,1:ny+1);

for i=2:nx-1,for j=2:ny+1; % finding the ENO values for the face velocities

ss=0.5*sign(u(i+1,j)+u(i,j));

ux(i+1,j)=(0.5+ss)*(u(i,j)+0.5*minabs((u(i+1,j)-u(i,j)),(u(i,j)-u(i-1,j))))...

+(0.5-ss)*(u(i+1,j)-0.5*minabs((u(i+2,j)-u(i+1,j)),(u(i+1,j)-u(i,j))));

end,end

ux(2,2:ny+1)=0.5*u(2,2:ny+1)+u(1,2:ny+1); ux(nx+1,2:ny+1)=0.5*u(nx,2:ny+1)+u(nx+1,2:ny+1); %Bdry

for i=2:nx,for j=3:ny;

ss=0.5*sign(v(i+1,j)+v(i,j));

uy(i,j+1)=(0.5+ss)*(u(i,j)+0.5*minabs((u(i,j+1)-u(i,j)),(u(i,j)-u(i,j-1))))...

+(0.5-ss)*(u(i,j+1)-0.5*minabs((u(i,j+2)-u(i,j+1)),(u(i,j+1)-u(i,j))));

end,end

uy(1:nx+1,2)=0.0;uy(1:nx+1,ny+1)=0.0; % Bottom and Top

for i=2:nx,for j=2:ny+1 % TEMPORARY u-velocity-ADVECTION

ut(i,j)=u(i,j)+dt*(-(u(i,j)*(ux(i+1,j)-ux(i,j))/dkh(i)+...

5.3. ADVECTING THE FRONT ACROSS PERIODIC BOUNDARIES 67

0.25*(v(i,j-1)+v(i+1,j-1)+v(i+1,j)+v(i,j))*(uy(i,j+1)-uy(i,j))/dl(j))+...

fx(i,j)/(0.5*(r(i+1,j)+r(i,j))) ...

- (1.0 -rro/(0.5*(r(i+1,j)+r(i,j))))*gx);

end,end

for i=3:nx,for j=2:ny; % finding the ENO values for the face velocities

ss=0.5*sign(u(i,j+1)+u(i,j));

vx(i+1,j)=(0.5+ss)*(v(i,j)+0.5*minabs((v(i+1,j)-v(i,j)),(v(i,j)-v(i-1,j))))...

+(0.5-ss)*(v(i+1,j)-0.5*minabs((v(i+2,j)-v(i+1,j)),(v(i+1,j)-v(i,j))));

end,end

vx(2,1:ny+1)=0.0;vx(nx+1,1:ny+1)=0.0; % Left and Right

for i=2:nx+1,for j=2:ny-1;

ss=0.5*sign(v(i,j+1)+v(i,j));

vy(i,j+1)=(0.5+ss)*(v(i,j)+0.5*minabs((v(i,j+1)-v(i,j)),(v(i,j)-v(i,j-1))))...

+(0.5-ss)*(v(i,j+1)-0.5*minabs((v(i,j+2)-v(i,j+1)),(v(i,j+1)-v(i,j))));

end,end

vy(2:nx+1,2)=0.5*v(2:nx+1,2)+v(2:nx+1,1); vy(2:nx+1,ny+1)=0.5*v(2:nx+1,ny)+v(2:nx+1,ny+1); %Bdry

for i=2:nx+1,for j=2:ny % TEMPORARY v-velocity-ADVECTION

vt(i,j)=v(i,j)+dt*(-(0.25*(u(i-1,j)+u(i,j)+u(i,j+1)+...

u(i-1,j+1))*(vx(i+1,j)-vx(i,j))/dk(i)+ ...

v(i,j)*(vy(i,j+1)-vy(i,j))/dlh(j))+ ...

fy(i,j)/(0.5*(r(i,j+1)+r(i,j))) ...

- (1.0 -rro/(0.5*(r(i,j+1)+r(i,j))))*gy);

end,end

for i=2:nx,for j=2:ny+1 % TEMPORARY u-velocity-DIFFUSION

ut(i,j)=ut(i,j)+dt*(...

(1./dkh(i))*2.*(m(i+1,j)*(1./dk(i+1))*(u(i+1,j)-u(i,j)) - ...

m(i,j) *(1./dk(i))*(u(i,j)-u(i-1,j))) ...

+(1./dl(j))*(0.25*(m(i,j)+m(i+1,j)+m(i+1,j+1)+m(i,j+1))* ...

((1./dlh(j))*(u(i,j+1)-u(i,j)) + (1./dkh(i))*(v(i+1,j)-v(i,j))) - ...

0.25*(m(i,j)+m(i+1,j)+m(i+1,j-1)+m(i,j-1))* ...

((1./dlh(j-1))*(u(i,j)-u(i,j-1))+ (1./dkh(i-1))*(v(i+1,j-1)- v(i,j-1))))...

)/(0.5*(r(i+1,j)+r(i,j)));

end,end

for i=2:nx+1,for j=2:ny % TEMPORARY v-velocity-DIFFUSION

vt(i,j)=vt(i,j)+dt*(...

(1./dk(i))*(0.25*(m(i,j)+m(i+1,j)+m(i+1,j+1)+m(i,j+1))* ...

((1./dlh(j))*(u(i,j+1)-u(i,j)) + (1./dkh(i))*(v(i+1,j)-v(i,j))) - ...

0.25*(m(i,j)+m(i,j+1)+m(i-1,j+1)+m(i-1,j))* ...

((1./dlh(j))*(u(i-1,j+1)-u(i-1,j))+ (1./dkh(i-1))*(v(i,j)- v(i-1,j))))...

+(1./dlh(j))*2.*(m(i,j+1)*(1./dl(j+1))*(v(i,j+1)-v(i,j)) - ...

m(i,j) *(1./dl(j))*(v(i,j)-v(i,j-1))) ...

)/(0.5*(r(i,j+1)+r(i,j)));

end,end

%==

% Compute source term and the coefficient for p(i,j)

rt=r; lrg=1000;

rt(1:nx+2,1)=lrg;rt(1:nx+2,ny+2)=lrg;

rt(1,1:ny+2)=lrg;rt(nx+2,1:ny+2)=lrg;

for i=2:nx+1,for j=2:ny+1

tmp1(i,j)= (0.5/dt)*((ut(i,j)-ut(i-1,j))/dk(i)+(vt(i,j)-vt(i,j-1))/dl(j));

tmp2(i,j)=1.0/((1./dk(i))*(1./(dkh(i)*(rt(i+1,j)+rt(i,j)))+...

1./(dkh(i-1)*(rt(i-1,j)+rt(i,j))))+...

68 CHAPTER 5. MORE ADVANCED CODE

(1./dl(j))*(1./(dlh(j)*(rt(i,j+1)+rt(i,j)))+...

1./(dlh(j-1)*(rt(i,j-1)+rt(i,j)))));

end,end

for it=1:maxit % SOLVE FOR PRESSURE

oldArray=p;

for i=2:nx+1,for j=2:ny+1

p(i,j)=(1.0-beta)*p(i,j)+beta* tmp2(i,j)*(...

(1./dk(i))*(p(i+1,j)/(dkh(i)*(rt(i+1,j)+rt(i,j)))+...

p(i-1,j)/(dkh(i-1)*(rt(i-1,j)+rt(i,j))))+...

(1./dl(j))*(p(i,j+1)/(dlh(j)*(rt(i,j+1)+rt(i,j)))+...

p(i,j-1)/(dlh(j-1)*(rt(i,j-1)+rt(i,j)))) - tmp1(i,j));

end,end

if max(max(abs(oldArray-p))) <maxError, break,end

end

for i=2:nx,for j=2:ny+1 % CORRECT THE u-velocity

u(i,j)=ut(i,j)-dt*(2.0/dkh(i))*(p(i+1,j)-p(i,j))/(r(i+1,j)+r(i,j));

end,end

for i=2:nx+1,for j=2:ny % CORRECT THE v-velocity

v(i,j)=vt(i,j)-dt*(2.0/dlh(j))*(p(i,j+1)-p(i,j))/(r(i,j+1)+r(i,j));

end,end

%================== ADVECT FRONT =====================

for l=2:Nf+1

ip=floor(sxf(l)-0.5);jp=floor(syf(l)); ax=sxf(l)-0.5-ip;ay=syf(l)-jp;

uf(l)=(1.0-ax)*(1.0-ay)*u(ip,jp)/dkh(ip)+ax*(1.0-ay)*u(ip+1,jp)/dkh(ip+1)+...

(1.0-ax)*ay*u(ip,jp+1)/dkh(ip)+ax*ay*u(ip+1,jp+1)/dkh(ip+1);

ip=floor(sxf(l));jp=floor(syf(l)-0.5); ax=sxf(l)-ip;ay=syf(l)-0.5-jp;

vf(l)=(1.0-ax)*(1.0-ay)*v(ip,jp)/dlh(jp)+ax*(1.0-ay)*v(ip+1,jp)/dlh(jp)+...

(1.0-ax)*ay*v(ip,jp+1)/dlh(jp+1)+ax*ay*v(ip+1,jp+1)/dlh(jp+1);

end

for i=2:Nf+1, sxf(i)=sxf(i)+dt*uf(i); syf(i)=syf(i)+dt*vf(i);end %MOVE THE FRONT

sxf(1)=sxf(Nf+1);syf(1)=syf(Nf+1);sxf(Nf+2)=sxf(2);syf(Nf+2)=syf(2);

%------------ Add points to the front ------------

sxfold=sxf;syfold=syf; j=1;

for l=2:Nf+1

ds=sqrt((sxfold(l)-sxf(j))^2 + (syfold(l)-syf(j))^2);

if (ds > 0.5)

j=j+1;sxf(j)=0.5*(sxfold(l)+sxf(j-1));syf(j)=0.5*(syfold(l)+syf(j-1));

j=j+1;sxf(j)=sxfold(l);syf(j)=syfold(l);

elseif (ds < 0.25)

% DO NOTHING!

else

j=j+1;sxf(j)=sxfold(l);syf(j)=syfold(l);

end

end

Nf=j-1;

sxf(1)=sxf(Nf+1);syf(1)=syf(Nf+1);sxf(Nf+2)=sxf(2);syf(Nf+2)=syf(2);

%-----------find the coordinates in real space-------------

for l=2:Nf+1

ip=floor(sxf(l));jp=floor(syf(l));

xf(l)=(ip+1-sxf(l))*x(ip)+(sxf(l)-ip)*x(ip+1);

yf(l)=(jp+1-syf(l))*y(jp)+(syf(l)-jp)*y(jp+1);

end

xf(1)=xf(Nf+1);yf(1)=yf(Nf+1);xf(Nf+2)=xf(2);yf(Nf+2)=yf(2);

5.3. ADVECTING THE FRONT ACROSS PERIODIC BOUNDARIES 69

%------------ distribute gradient --------------

fx=zeros(nx+2,ny+2);fy=zeros(nx+2,ny+2); % Set fx & fy to zero

for l=2:Nf+1

nfx=-0.5*(yf(l+1)-yf(l-1))*(rho2-rho1);

nfy=0.5*(xf(l+1)-xf(l-1))*(rho2-rho1); % Normal vector

ip=floor(sxf(l)-0.5);jp=floor(syf(l));

ax=sxf(l)-0.5-ip;ay=syf(l)-jp;

fx(ip,jp) =fx(ip,jp)+(1.0-ax)*(1.0-ay)*nfx/dkh(ip)/dl(jp);

fx(ip+1,jp) =fx(ip+1,jp)+ax*(1.0-ay)*nfx/dkh(ip+1)/dl(jp);

fx(ip,jp+1) =fx(ip,jp+1)+(1.0-ax)*ay*nfx/dkh(ip)/dl(jp+1);

fx(ip+1,jp+1)=fx(ip+1,jp+1)+ax*ay*nfx/dkh(ip+1)/dl(jp+1);

ip=floor(sxf(l));jp=floor(syf(l)-0.5);

ax=sxf(l)-ip;ay=syf(l)-0.5-jp;

fy(ip,jp) =fy(ip,jp)+(1.0-ax)*(1.0-ay)*nfy/dk(ip)/dlh(jp);

fy(ip+1,jp) =fy(ip+1,jp)+ax*(1.0-ay)*nfy/dk(ip+1)/dlh(jp);

fy(ip,jp+1) =fy(ip,jp+1)+(1.0-ax)*ay*nfy/dk(ip)/dlh(jp+1);

fy(ip+1,jp+1)=fy(ip+1,jp+1)+ax*ay*nfy/dk(ip+1)/dlh(jp+1);

end

%------------ construct the density --------------

r=zeros(nx+2,ny+2)+rho1;

for iter=1:maxit

oldArray=r;

for i=2:nx+1,for j=2:ny+1

r(i,j)=0.25*(r(i+1,j)+r(i-1,j)+r(i,j+1)+r(i,j-1)+...

dkh(i-1)*fx(i-1,j)-dkh(i)*fx(i,j)+...

dlh(j-1)*fy(i,j-1)-dlh(j)*fy(i,j));

end,end

if max(max(abs(oldArray-r))) <maxError, break,end

end

%------------ update the viscosity --------------

m=zeros(nx+2,ny+2)+m1;

for i=2:nx+1,for j=2:ny+1

m(i,j)=m1+(m2-m1)*(r(i,j)-rho1)/(rho2-rho1);

end,end

%==

time=time+dt % plot the results

uu(1:nx+1,1:ny+1)=0.5*(u(1:nx+1,2:ny+2)+u(1:nx+1,1:ny+1));

vv(1:nx+1,1:ny+1)=0.5*(v(2:nx+2,1:ny+1)+v(1:nx+1,1:ny+1));

hold off,contour(x,y,flipud(rot90(r))),axis equal,axis([0 Lx 0 Ly]);

hold on;quiver(xh,yh,flipud(rot90(uu)),flipud(rot90(vv)),’r’);

plot(xf(1:Nf),yf(1:Nf),’k’,’linewidth’,5);pause(0.01)

end

function x=minabs(a,b)

x=0.5*(sign(abs(b)-abs(a))*(a-b)+a+b);

	Introduction
	Computations
	Problem Specification
	Governing Equations
	Layout of the rest of the tutorial

	Simple Flow Solver
	Governing Equations
	Integration in Time
	Spatial Discretization
	Discretization of the advection terms
	Discretization of the diffusion terms

	The Pressure Equation
	The Computational Domain
	Boundary Conditions
	Numerical Algorithm
	Advecting the Density: Centered Differences with Diffusion
	Numerical Code (MATLAB)
	Results
	Exercises

	2D Front Tracking
	Moving the front
	Constructing the density field
	Restructuring the front
	Numerical Code (MATLAB)
	Results
	Exercises

	A More Complete Code
	Surface Tension
	Different Viscosities
	Second Order in Time
	Keeping Flows in Periodic Domains Stationary
	More Complete Code
	Results
	Exercises

	More Advanced Code
	Stretched Grids
	Advecting the Front
	Grid Generation
	Stretched Grid Code
	Results

	Advection by ENO
	Advecting the Front Across Periodic Boundaries
	Stretched Grid plus ENO Code

