

Contact Lines

- Continuum mechanics cannot adequately model the contact line between two phases
- Interface tracking required and extra modelling assumptions must be invoked

 Discrete molecular dynamics captures phase change and interaction naturally*

*Hadjiconstantinou (1998)

Fluid-wall interactions

 Molecular Dynamics allows nanoscopic analysis of wall treatments and interactions

• Nano-scale surface roughness

Nucleation

Continuum to Molecular coupling

- Simulate molecular dynamics where discrete effects are important
- The bulk of the domain is simulated by the continuum solver
- A discrete form of Reynolds' transport theorem is required to provide a consistent framework

O'Connell, Thompson (1995), Flekkoy et al (2000), Delgado Buscalioni(2003), Nie et al (2004)

Discrete Pressure Tensor

Molecular stress tensor is non-unique*

 The correct form is a source of big debate in the literature^

$$F_{surface} = \oint_{S} \mathbf{\Pi} \cdot d\mathbf{S} = \int_{V} \mathbf{\nabla} \cdot \mathbf{\Pi} dV$$

$$\Pi = PI + \sigma$$

*Schofield, Henderson (1982)

^Irving,Kirkwood(1950), Parker (1954), Lutsko (1988), Todd et al (1995), Zhou (2004), Murdoch (2010), Heyes (2011)

