
1

Best Practice in Software
Design

By Edward Smith
www.edwardsmith.co.uk

 27th Feburary 2019

http://www.edwardsmith.co.uk/

2

● Research Software Engineering
– Introduction
– Programming to an interface

● Testing and version control
– Minimal examples of testing an interface
– TDD and continuous integration

● Examples from my work with CPL library
– Quick overview of what it does/challenges
– Unit testing and deployment examples

● Frustrations and discussion points

Overview

3

• Researcher and software engineer (moving to Brunel as lecturer)
– Civil, Mech & Chem Eng at IC (EPSRC, dCSE and eCSE funding)
– About 11 years of programming experience
– Software Sustainability Institute fellow (www.software.ac.uk)
– Taught Python at Imperial
– Organised a workshop on Continuous Integration for HPC
– Involved with RSE at Imperial and several UK RSE conferences
– Answer questions on Stackoverflow (7k+ reputation)

• I want to promote best practice to prevent people going through the
same process I did

My Background

Excel → MATLAB Excel → MATLAB → FORTRAN → Fortran → Python → C++→ FORTRAN → Fortran → Python → C++

 for (auto &f : objs)

 f->
run(x);

http://www.software.ac.uk/

4

Research Software
Engineering

5

Research Software Engineering

● Software sustainability institute
(SSI) is a great place to start!

● Improving software is more than just learning
Python, Git and Docker

● Many researchers work on legacy software
and believe it's the way to code

● Nothing wrong with Fortran – no bad
languages, just bad code

6

Scientific Method for Scientific Computing

“In so far as a scientific software speaks about reality, it
must be testable; and in so far as it is not testable, it does
not speak about reality”

“In so far as a scientific statement speaks about reality, it
must be falsifiable; and in so far as it is not falsifiable, it
does not speak about reality” Karl Popper

The Scientific Method
● Create a theory that explains reality
● Present to the scientific community
● It is valid until a single counter example is found

The Software Design Method
● Create software that explains reality
● Make it open to the scientific community
● It is only valid until a single bug is found

7

The Engineering Method for Software Engineering

● Scientific software is a prototype
– Quick to develop with novel parts
– Bespoke components developed by

a small team who understand
everything

– Generally not reliable (but fast)

● Software Engineering is mass
production
– Slow to develop
– Standardised components with

clear interface
– Reliability from rigourous testing

procedure validation

8

A Pragmatic Developer Spectrum

Quick script/
calculation

Production
API with

documentation

Generalise
variables

and
refactor

Add functions
for repeated

code

Test and
ensure

functions work
beyond your

own use

Use objects to
further reduce
repeated code

(optional)

Generalise and
reuse functions
for other bits of

code

Package
as a

module
or library

with
fixed

interface

Time (log scale) → ∞

Full test
coverage,

edge
cases

9

Programming to an Interface

● The one thing I'd wish I'd understood earlier when writing code
– Consider a USB port, you can use the same cable anywhere

– Standardisation of interfaces built the modern world

10

Functional Interface

● The inputs to a function and returned output are like a
contract with the user, 'give me this and I will give you that'

– Take inputs in some format

– Return output in some format

– This hides the complexity from the user, you only need to
know the format of the function or class

● When releasing software, version number systems are based
around this

– From v1.0 to v1.1 the interface stays the same

– If major number changes, e.g. v1.1 to v2.0, the interface
has changed and is no longer backward compatible

11

Functional Interface

● Functions are like a contract with the user, here we take in the
file name and return the data from the file

def square(a):

 return a**2

TAKES A NUMBER AND RETURNS ITS SQUARE

#Iterate through files

for f in files:

 data = read_file(f)

TAKES A FILENAME AND RETURNS ITS CONTENTS

● We aim to design functions so for a given input we get back a
consistent output

12

Binary
0100010
1010101
0101011

read_file(f)

Data Analysis

User Interface

Examples of an Interface

Column
1.011536
2.432536
-12.4356

Text
'KeyWord
{
1.2, 3.4, 5.2
}

data

13

Programming to an Interface

Focus your design on what the
code is doing, not how it does it

Interface here is used in the general sense of the allowed inputs
to a function, object, program (command line/file) or GUI.

Often called an application program interface (API)

14

Other Examples of an Interface

● Most linux commands
– convert picture.png picture.jpg (command line)

● BLAS and LAPACK (purely functional)
– Basic matrix algebra and linear algebra packages, scipy uses

these libraries extensively (faster than optimised code)

● Message Passing Interface – MPI (mostly functional)

– Provides communication between processes on
supercomputers through send and receive functions

● Objects with an abstract base class (Object Oriented)

– Inheritance defines interface instead of providing functionality

– Design patterns aim to codify experience

15

Advantages of an Interface

● Makes it very clear what your software does
● Allows tests to be designed using expected functionality
● Forces you to think carefully about modular

design, like lego blocks
● Code can be redesigned or refactored with

no impact provided the interface is the same
● Enables teamwork by allowing clear division of

responsibility
● By limiting available functionality, you can ensure use is

not outside of intended range
● More likely to be used in other peoples' software

16

Testing and Version Control

17

Unit Testing

● Functions are like a contract with the user, unit tests aim to
ensure these work as expected

function square(a)

 return a**2

end function

assertAlmostEqual(square(2.0), 4.0)

assertEqual(square(2), 4)

Assert raises an error if
the logical statement is
not true. Note, finite
precision arithmetic so
non exact

18

Unit Testing in Python (unittest/Pytest)

import unittest

def square(a):

 return a**2

class test_square(unittest.TestCase):

 def test_float(self):

 self.assertAlmostEqual(square(2.), 4.)

 def test_int(self):

 self.assertEqual(square(2), 4)

unittest.main(argv=['first-arg-is-ignored'], exit=False)

Required format for
unittest (test class
inherits from
unittest.TestCase
base class)

arg-is-ignored to
avoid an error in
jupyter notebooksA minimal example with Travis CI is available

https://github.com/edwardsmith999/python_example_project

Assert raises an error if
the logical statement is
not true. Note, finite
precision arithmetic so
non exact

https://github.com/edwardsmith999/python_example_project

19

Unit Testing in C++ (gtest)

● A testing framework for C++ code which can be packaged as a set
of header files

● A minimal example with Travis CI is available
https://github.com/edwardsmith999/cpp_example_project

● Macros to allow easy
naming of testing
functions

● Range of assert test

● Build up/tear down

● Used with Google
mocks

https://github.com/edwardsmith999/cpp_example_project

20

Unit Testing in Fortran (FRUIT)

● A complete package with a driver written in Ruby

● Personally I use just the fruit.f90 file from /fruit_3.4.3/src/

gfortran fruit.f90 fruit_test.f90

● Allows assert and summaries

● A minimal example with Travis CI
https://github.com/edwardsmith999/fortran_example_project

https://github.com/edwardsmith999/fortran_example_project

21

Version Control

● Once you have some code, put it into a code repository

– Backup in case you lose you computer

– Access to code from home, work and anywhere else.

– Allows you to keep a clear history of code changes

– Only reasonable option when working together on a code

● Three main repositories are Git, Mercurial and Subversion.

● Most common is Git while Subversion is often disregarded due to
centralised model.

● Range of ”free” services for hosting – Github (Imperial subscription),
Bitbucket, Gitlab, CloudForge, etc

● Or you can host your own

22

Version Control

● Git is the most popular version control (Github a hosting site)

– git clone http://www.github/repo/loc ./out Clone directory to out

– git log Check history of commits

– git diff Check changes made by user since last

– git pull Get latest changes from origin (fetch+merge)

– git add Add changes to staging area

– git commit -m ”Log message” Commit changes with message

– git push Push changes to origin

– git branch Create a branch of the code

http://www.github/repo/loc

23

Automated Testing with Travis and Github

● When you commit code to version control, your tests are run
automatically. If a change breaks the test, you get emailed

● This (along with deployment) is known as continuous integration

● Script here is Travis CI linked to github, free for open source

● Many other options including Jenkins, buildbot, circleCI, gitlab,
ANVIL (STFC) or setup your own local solution using scripts

BUT IN MY EXPERIENCE – IF YOU DON'T AUTOMATE IT
 IT DOESN'T GET RUN!!

buildbuild passingpassing
default: test
 echo "Default"
test:
 pytest test_fns.py

Makefile.travis.yml
os: linux
language: python
python:
 - 2.7
 - 3.6
script:
 - make test

24

Best Practice – Test Driven Development

● Work out what you want the software to do

● Write tests first to define the desired
functionality – Test Driven Development (TDD)

● Develop functions or classes to pass these test
scripts

25

Unit Testing and TDD in Python

import unittest

def square(a):

 pass

class test_square(unittest.TestCase):

 def test_float(self):

 self.assertAlmostEqual(square(2.), 4.)

 def test_int(self):

 self.assertEqual(square(2), 4)

unittest.main(argv=['first-arg-is-ignored'], exit=False)

Assert raises an error if
the logical statement is
not true. Note, finite
precision arithmetic so
non exact

Function initial empty
and written to satisfy
required functionality

26

Unit Testing and TDD in Python

import unittest

def square(a):

 return a**2

class test_square(unittest.TestCase):

 def test_float(self):

 self.assertAlmostEqual(square(2.), 4.)

 def test_int(self):

 self.assertEqual(square(2), 4)

unittest.main(argv=['first-arg-is-ignored'], exit=False)

Write a function
which passes both
tests

27

Unit Testing and TDD in Python

import unittest

def square(a):

 return a**2

def cube(a):

 pass

class test_square(unittest.TestCase):

 def test_float(self):

 self.assertAlmostEqual(square(2.), 4.)

 def test_int(self):

 self.assertEqual(square(2), 4)

class test_cube(unittest.TestCase):

 def test_float(self):

 self.assertAlmostEqual(cube(2.), 8.)

 def test_int(self):

 self.assertEqual(cube(2), 8)

unittest.main(argv=['first-arg-is-ignored'],
 exit=False)

Add a new test
to define the new
function cube

28

Unit Testing and TDD in Python

import unittest

def square(a):

 return a**2

def cube(a):

 return a**3

class test_square(unittest.TestCase):

 def test_float(self):

 self.assertAlmostEqual(square(2.), 4.)

 def test_int(self):

 self.assertEqual(square(2), 4)

class test_cube(unittest.TestCase):

 def test_float(self):

 self.assertAlmostEqual(cube(2.), 8.)

 def test_int(self):

 self.assertEqual(cube(2), 8)

unittest.main(argv=['first-arg-is-ignored'],
exit=False)

We have written
cube to pass the
test

29

Testing in Scientific Code

● Much easier said than done
– Thinking of meaningful tests is often far from easy
– Test driven development (TDD) best with simple aims

● Academic suicide?
– Serious investment of time; whole teams for this in

companies
– There is no reward mechanism for reliable software

● General advice now is something is better than nothing
– Probably cannot meet software engineering standards
– But can aim for a level of falsifiability to please Popper
– Academics already do testing/verification
– Need better unit-testing and automation with continuous

integration (CI).

30

A Real Example

CPL Library

• We are coupling two separate codes to run together
• Grid based Computational Fluid Dynamics (CFD)
• Particles e.g. Molecular Dynamics (MD)
• Both use MPI and require a complex setup

• CPL library is a shared library
• Codes built separately
• Exchange information through minimal interface of

send/recv functions
• This is good because it

• Allows separate testing of CPL library and both codes
• Maintains scope of both codes
• Promotes optimal scaling

• Domain Decomposition (MD near wall,
CFD for remaining domain)

CPL library

Average

Force

Black lines are the analytical
solution for Couette flow

A Tale of Two Grids

Average

Force

A Tale of Two Grids

CFD solved on grid averaged on grid
Particles

MPI

libcpl.so

CPL library

Average

Force

Average

Force

A Tale of Two Grids

OpenFOAM LAMMPS

CPL_init(COMM, realm)

CPL_setup(cells,domain,proc_topology)

CPL_send(U, P) CPL_recv(U, P)

libcpl.so

CPL_send(Fsum,e)CPL_recv(Fsum,e)

CPL library

 mpiexec -n 4 ./cfd.exe : –n 48 ./dem.exe Two codes sharing a communicator

CPL Mocks - A Tale of Two Grids

OpenFOAM
libcpl.so

CPL library

 mpiexec -n 4 ./cfd.exe : –n 48 ./mock.py Two codes sharing a communicator

Any CFD e.g.
CPL Mock

Average

CPL Mocks - A Tale of Two Grids

LAMMPS
libcpl.so

CPL library

 mpiexec -n 4 ./mock.py : –n 48 ./dem.exe Two codes sharing a communicator

Any DEM e.g.
CPL Mock

Force

A Tale of Two Grids

OpenFOAM LAMMPS
libcpl.so

CPL library

 mpiexec -n 4 ./cfd.exe : –n 48 ./dem.exe Two codes sharing a communicator

Average

Force

CPL Unit Tests

• A range of possible topologies are tested (pytest)

– Checks cell numbers for a wide range of
processor topologies using MPI

– Test unsupported cases raise expected errors

• Test mix of Fortran, C++ and Python codes (pytest)

– Examples from website

– Test for memory leaks with valgrind

• Range of utilities grids, fields and forces (gtest
offline without MPI)

– 4D array system in Fortran, C++ and Python

– Methods to average particle system

– A range of forces tested against literature

40

How to Test Parallel Code?

•We test parallel case on a range of different processor topologies
– pytest parameterize to create all possibilities

– Serial code uses subprocess (i.e. python starting another program) to
create possible MPI runs with mpiexec

41

Automated Testing

● Travis CI script is slightly more complex but ensures both build (on
fresh linux) ands test works as expected

http://travis-ci.org/Crompulence/cpl-library
os: linux
sudo: required
language: python
python:
 - 2.7
env:
 - MPI=mpich3 GCC_VERSION=5
before_install:
 - sh ./make/travis/travis-install-gcc.sh
 ...
 - export MPI_DIR=$MPI_BUILD_DIR/$MPI
install:
 - export PATH=$MPI_DIR/bin:$PATH
 - make
script:
 - make test-all

Deployment Through Docker/Singularity

• Use Dockerfile and convert to singularity as more supported and Docker
is clearer to me than the singularity scientific file system

● Start from a container with choice of linux, I use Ubuntu 16.04
● Script with each command adding another layer (group each RUN)

start from base
FROM ubuntu:16.04
MAINTAINER Edward Smith
<edward.smith05@imperial.ac.uk>

#Install compilers, mpi (with ssh)
RUN apt-get update && apt-get install -y \
 gcc \
 gfortran \
 git-core \
 build-essential \
 mpich \
 openssh-server \
 ...

#Clone code from github
RUN git clone
https://github.com/Crompulence/cpl-
library.git /cpl-library
WORKDIR /cpl-library

#Install CPL library
RUN make PLATFORM=gcc

#Add to the path
ENV CPL_PATH=/cpl-library
ENV CPL_BIN_PATH="$CPL_PATH/bin"
ENV PATH=${CPL_BIN_PATH}:$PATH

Deployment Through Docker/Singularity

• Use Dockerfile and convert to singularity as more supported and Docker
is clearer to me than the singularity scientific file system

● Start from a container with choice of linux, I use Ubuntu 16.04
● Script with each command adding another layer (group each RUN)
● Rebuild when github changes automated using DockerHub

Ubuntu 16.04

MPICH

Python Packages

CPL library

LAMMPS

CPL_APP_LAMMPS

OpenFOAM

CPL_APP_OpenFOAM

OpenFOAM

CPL_APP_OpenFOAM

LAMMPS

CPL_APP_LAMMPS

CPL pull

Running Coupled Docker or Singularity

• The use of containers for coupling allows a variety of run options, with
Docker you start a container

sudo docker run -it --name cplrun cpllibrary/cpl-openfoam-lammps

• then run coupled cases inside the container which has inputs files
mpirun -n 1 CPLSediFOAM -case ./openfoam/ -parallel &
mpirun -n 1 lmp_cpl < lammps/fcc.in

• With Singularity, mpirun is outside the container so we start an
executable in each container and they couple through MPI

singularity pull docker://cpllibrary/cpl-openfoam-lammps

• executables from container, input files from local directory
mpirun -n 1 singularity exec cpl-openfoam-lammps.simg \

 CPLSediFOAM -case ./openfoam/ -parallel &

mpirun -n 1 singularity exec cpl-openfoam-lammps.simg \

 lmp_cpl < lammps/fcc.in

More detail: www.cpl-library.org/wiki

Frustrations – Testing and Deployment

• Much more time needed to develop unit tested software
● Maintainance burden of tests can be more than code
● Only as good as the tests you can devise
● Relies on everyone fixing broken builds as they occur

• Issue of deployment still tricky as MPI is a tough
dependency and we must build OpenFOAM and
LAMMPS (with patching)

● Building from source is different on each platform
(especially supercomputers with old libc)

● Docker and Singularity work only if fully embraced by
users

Frustrations - Tools

• Git for academic workflow may be overkill
● Previously used subversion, fine for a few people
● Scientific workflow often involve many computers

(work, home, cx1, cx2, archer, etc..), branches add to
this complexity and you end up centralised anyway

• Supporting Dockerhub and Travis continuous
deployment is a full time job

● You need to support changes for any upstream
packages, if a repository is offline, can trigger an error

● Travis as a solution is frustrating – cannot run locally so
often waste time trying to figure a simple error by
committing to github

Frustrations - Science

• Failed to deliver a scientific results
● Run out of time, need results, collaborators now using

semi-commercial code which gives clear results
● The problem is not software but the science, so little

time spent on this (c.f. hashing out code)
● Scientific prototype may be better, then RSE rewriting?

• Scientific problems have physical validation cases
● Unit test are less meaningful if the whole model works?
● Chaotic behaviour means repeatability often impossible
● Testing noisy data vs. analytical solutions is imprecise

and very difficult to automate in a non-brittle way

51

Pin the Open Source on the Project

Quick script/
calculation

Production
API with

documentation

Generalise
variables

and
refactor

Add functions
for repeated

code

Test and
ensure

functions work
beyond your

own use

Use objects to
further reduce
repeated code

(optional)

Generalise and
reuse functions
for other bits of

code

Package
as a

module
or library

with
fixed

interface

Full test
coverage,

edge
cases

Open
Source

Open
Source?

Open
Source

Open
Source?

Open Open
ScienceScience

Software Software
EngineeringEngineering

52

● Research Software Engineering
– Introduction
– Programming to an interface

● Testing and version control
– Minimal examples of testing an interface
– TDD and continuous integration

● Examples from my work with CPL library
– Quick overview of what it does/challenges
– Unit testing and deployment examples

● Frustrations and discussion points

Summary

Questions/Discussion

• How much time should be invested in software
engineering for an academic project? Led by PI?

• When should code be made open source? To validate
scripts (scientific) or only when very polished (RSE)

• Is a CI Github/Travis workflow the best one? What about
local testing or CI on supercomputers?

• Is Docker or singularity (now commercial) a good
solution for deployment, or is there a better one?

54

Extra Slides

55

CFD (OpenFOAM)

• Libraries of field objects which perform differential
operations on themselves (you write your own solver)

from notes by
Mirco Maginini

MD (LAMMPS)

• Solve Newton's laws for N
interacting molecules

– Add up all forces F
i
on mol i

– Move i by integrating F
i
=m

i
a

i

• LAMMPS uses ”hooks”

– User additions are designed as
an object with set interface

– Functions pre_force or
end_of_step can be defined

Force

Move

Deployment Through Anaconda

• A package manager for scientific computing and Python
• OpenFOAM takes 8+ hrs to build from source
• Packaged on virtual machine for compatibility with linux

on ARCHER, CX1, CX2 and supercomputer in Texas

This work is mainly by Eduardo Ramos-Fernandez

Test Different Topologies / Communication

• See also utils/design_topology/ for a gui to try your own, run
with python cpl_gridsetup.py

59

Proc 1 Proc 2 Proc 3 Proc 4

Developed for linking of particle
and continuum code

Previous focus on scalability
(for supercomputers)

Maintains separate scope of
each code by linking shared
library

All MPI
communications

are local

Scaling on Supercomputers

Proc 1 Proc 2

Weak scaling
 - Particle only x
 - Particle Coupled o

60

MPI

● Communicators are used to determine which processes communicate

– MPI_send(data, size, MPI_COMM)

● The default that contains all communicators is MPI_COMM_WORLD

● Fine to use this as long as there is only ever one world

LAMMPSLAMMPSLAMMPSLAMMPS OpenFOAMOpenFOAMOpenFOAMOpenFOAM

61

Minimal Examples Online

● git clone https://github.com/edwardsmith999/python_example_project.git

● git clone https://github.com/edwardsmith999/cpp_example_project.git

● git clone https://github.com/edwardsmith999/fortran_example_project.git

62

An example with an Object

● A number class which includes methods to get square and cube

class Number():

 def __init__(self, a):

 self.a = a

 def square(self):

 pass

 def cube(self):

 pass

63

Testing an Object

import unittest

class Number():

 def __init__(self, a):

 self.a = a

 def square(self):

 pass

 def cube(self):

 pass

Class methods empty
and must be written to
pass tests

Desired class functionality is DEFINED by the tests
class test_number(unittest.TestCase):

 def test_float(self):

 n = Number(2.)

 self.assertAlmostEqual(n.square(), 4.)

 self.assertAlmostEqual(n.cube(), 8.)

 def test_int(self):

 n = Number(2)

 self.assertEqual(n.square(), 4)

 self.assertEqual(n.cube(), 8)

unittest.main(argv=['first-arg-is-ignored'],

 exit=False)

64

Testing an Object

import unittest

class Number():

 def __init__(self, a):

 self.a = a

 def square(self):

 return self.a**2

 def cube(self):

 return self.a**3

Class methods written in
order to satisfy required
functionality

Desired class functionality is DEFINED by the tests
class test_number(unittest.TestCase):

 def test_float(self):

 n = Number(2.)

 self.assertAlmostEqual(n.square(), 4.)

 self.assertAlmostEqual(n.cube(), 8.)

 def test_int(self):

 n = Number(2)

 self.assertEqual(n.square(), 4)

 self.assertEqual(n.cube(), 8)

unittest.main(argv=['first-arg-is-ignored'],

 exit=False)

