
1

Scientific Python

By Edward Smith

19th September 2017

10am

2

10:00 to 10:45 Review of yesterday

10:45 to 11:30 More on Numpy and plotting

11:30 to 12:00 Loading data from files

12:00 to 13:00 Lunch

13:00 to 13:45 Using Python as glue

13:45 to 14:30 More advanced plotting

14:30 to 15:30 A complete post-processing example

15:30 to 16:00 Best practice and summary

Plan for Today

http://tinyurl.com/ichpcclass

3

Introduction

4

Pros
• Free and open-source
• Not just for scientific

computing
• Great libraries (One of

Google's languages)
• Clear, clever and well

designed syntax
• Remote access (ssh)
• Great online

documentation
(stackoverflow!)

Cons
• No debugging GUI so

less user friendly
• Syntax is different with

some odd concepts
• No type checking can

cause problems
• Not as many scientific

toolboxes as MATLAB,
inbuilt help not as good

• Slow compared to low
level languages

Pros and Cons of Python (vs e.g. MATLAB)

5

● Post processing framework

– Low level data readers for a range of different data formats

– Higher level field provide standard data manipulation to
combine, average and prepare data to be plotted

● Visualiser Graphical User Interface

– Read all possible field objects in a folder

– Based on wxpython and inspired by MATLAB sliceomatic

● Batch running framework for compiled code

– Simple syntax for systematic changes to input files

– Specifiy resources for multiple jobs on desktop, CX1 or CX2

– Copies everything needed for repeatability including source
code, input files and initial state files

How I use Python in my Work

6

How I use Python in my Work

Fortran/MPI
Code

Input
File

Output
Files

GUI
OutputPost

Processing

User

7

How I use Python in my Work

GUI
Output

Batch
Running

Framework

Post
Processing

User

Average
Figure
Per Run

Fortran/MPI
Code

Input
File

Output
Files

8

How I use Python in my Work

GUI
Output

Batch
Running

Framework

Post
Processing

User

Average
Figure
Per Run

GUI
Input

Pre
Processing

Subversion/git
Checkout

Automated
Testing

Automated
Build

Fortran/MPI
Code

Input
File

Output
Files

9

Possible Future Extensions

Batch
Running

Framework

Post
Processing

User

Average
Figure
Per Run

GUI
Input

GUI
Run Info

Web
Scraping

Pre
Processing

Subversion/git
Checkout

Automated
Testing

Results
To Website

Automated
Build

Machine
Learning?

Fortran/MPI
Code

Input
File

Output
Files

GUI
Output

10

Aims for the course

● A focus on the strange or unique features of python
as well as common sources of mistakes or
confusion

● Help with the initial frustration of learning a new
language

● Prevent subtle or undetected errors in later code

● Make sure the course is still useful to the wide
range of background experiences

11

Review of Yesterday

10:15am

12

● Show how to use the command prompt to quickly learn Python

● Introduce a range of data types (Note everything is an object)

a = 3.141592653589 # Float

i = 3 # Integer

s = "some string" # String

l = [1,2,3] # List, note square brackets tuple if ()

d = {”red”:4, ”blue”:5} # dictionary

x = np.array([1,2,3]) # Numpy array

● Show how to use them in other constructs including conditionals (if
statements) iterators (for loops) and functions (def name)

● Introduce external libraries numpy and matplotlib for scientific
computing

What we covered yesterday

13

#Define Function

def square(input):

 "calculate square"

 output = input*input

 return output

Functions

Comment

Tell Python you
are defining a
function

Function name

Name of input
variable to the

function

Level of indent
determines what is
inside the function
definition. Variables
defined (scope)
exists only inside
function. Ideally 4
spaces and avoid
tabs. See PEP 8

Operation
on input
variable

Value to return from function

#We call the function like this
square(a) Out: 25.0

#Define a variable
a = 5.0

Document function here
"text" for one line or
""" multi-line verbose

and descriptive text """

14

● take some inputs
● perform some operation
● return outputs

Examples of Functions

f(a, b, …, z)Input Output

def divide(a, b):

 output = a/b

 return output

def line(m, x, c=3):

 y = m*x + c

 return y

def quadratic(a, b, c):

"Solve: y = ax2 + bx + c"

D = b**2 + 4*a*c

sol1 = (-b + D**0.5)/(2*a)

 sol2 = (-b – D**0.5)/(2*a)

 return sol1, sol2

def get_27():
 return 27

#Call using

get_27()

def do_nothing(a, b):
 a+b

Optional
variable.

Given a value
if not

specified

def redundant(a, b):
 return b

15

● Allow logical tests

#Example of an if statement

if a > b:

 print(a)

else:

 print(a, b)

if type(a) is int:

 a = a + b

else:

 print("Error – a is type ", type(a))

Conditionals

if a < b:

 out = a

elif a == b:

 c = a * b

 out = c

else:

 out = b

Logical test to
determine which
branch of the
code is run

Indent
determine
scope
4 spaces
here

16

● String manipulations

s = "some string"

t = s + " with more" Out: "some string with more"

s*3 Out: "some stringsome stringsome string"

s[3] Out: e

s[0:4] Out: some

s.title() Out: 'Some String'

s.capitalize() Out: "Some string"

s.find("x") Out: -1 #Not found

s.find("o") Out: 1

t = s.replace("some", "a") Out: t="a string"

● In ipython, use tab to check what functions (methods) are avaliable

Strings

17

● Use with statement to ensure file is closed

#Get data from file

fdir = "C:/dir/" + "path/to/file/"

with open(fdir + './log.txt') as f:

 filestr = f.read()

#File is automatically closed on leaving 'with' scope

Reading the whole file is usually efficient but for large files may need to
work through line by line:

f.readline() #Reads to newline "\n" and increment file pointer

f.seek(0) #Return to the start of the file

● Be careful of difference in functions: readline and readlines

● In ipython, use tab to check what functions (methods) are avaliable

Reading Files (as Strings)

18

● We can make lists of any type

m = ["another string", 3, 3.141592653589793, [5,6]]

print(m[0], m[3][0]) #Note indexing starts from zero

● Iterators – loop through the contents of a list

m = ["another string", 3, 3.141592653589793, [5,6]]

for item in m:

 print(type(item), " with value ", item)

● To add one to every element we could use

l = [1,2,3,4]

for i in range(len(l)):

 l[i] = l[i] + 1

 Lists and iterators

Note: will not work:
for i in l:
 i = i + 1
List comprehension
l = [i+1 for i in l]

19

● Dictonaries for more complex data storage

d = {"strings" : ["red", "blue"],

 "integers": 6,

 "floats": [5.0, 7.5]}

● Access elements using strings

d["strings"] out: ["red", "blue"]

● Elements can also be accessed using key iterators

for key in d:

 print(key, d[key])

Dictionaries

key Value

item

e.items()

e.keys()

e.values()

20

● Numpy – The basis for all other numerical packages to allow arrays
instead of lists (implemented in c so more efficient)

import numpy as np

x = np.array([1,2,3]])

x = x + 1 # out np.array([2,3,4])

● matplotlib – similar plotting functionality to MATLAB

import matplotlib.pyplot as plt

plt.plot(x)

plt.show() #Or to create a image file plt.savefig("out.png")

Importing Numerical and Plotting Libraries

Import module
numpy and name np

Similar to:
● c++ #include

● Fortran use
● R source()

● java import (I
think...)

● MATLAB adding
code to path

Use tab in ipython to see what code is available (or look online)

21

Classes in Python

● A person can train in a particular area and gain specialist skills

class Person():

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def say_name(self):

 print("Hello, I'm "

 + self.name)

bob = Artist('Bob Jones', 24)

jane = Scientist('Jane Bones', 32)

bob.do_art()

jane.do_science()

class Scientist(PersonPerson):
 def do_science(self):
 print(self.name +

 'is researching')

class Artist(PersonPerson):
 def do_art(self):
 print(self.name +

 'is painting')

22

What is a Module?

● Simply copy code to a new file, for example stuff.py. Any script or
Python session running in the same folder can import this,

import stuff

stuff.square(4.0)

stuff.cube(4.0)

● Module code should be functions and
classes ONLY. Scripts to test/run can be
 included using the following:

if __name__ == "__main__":

 print(square(2.0), cube(2.0))

23

• Chris Knight
• Isaac Sugden
• Edward Smith

• Ask the person next to you – there is a wide range of
programming experience in this room and things are only
obvious if you've done them before!

Tutors

24

Hands-On Session 1

1) Functions – write a function to square inputs a and b and return their sum

2) Strings – Combined strings "hello" and " world", convert to capitals and print

3) Files – Open a plain text file (created with e.g. notepad) and print in Python

4) Lists – Create a list with 1,2 and 3, add an extra entry 4 and iterate through the
list and print the contents

5) Dictionary – Create a shape_sides dictionary d with keys "triangle", "square" and
"pentagon" and values 3, 4 and 5 respectivly. Iterate and print all items

6) Numpy arrays – Import the numpy module, create an numpy arrays of values
from 1 to 5 and add one to each entry.

7) Create a module containing a function which adds two numbers a and b,
returning thier sum. import into a script and print output

8) Classes – Create a class called number which takes an input x in its constructor
and stores it (self.x = x). Add a method to square the (self.x) value and return

25

Introduction to
Numpy

and
Plotting

11:15am

26

● Python lists seem similar to arrays.They are not!

import numpy as np

m = [1,2,3,4,5,6]

x = np.array(m)

#Add one to a NumPy array increments elementwise

x = x + 1 # np.array([2, 3, 4, 5, 6, 7])

#But adding one to a list will cause a TypeError

m = m + 1

#But, conversion to numpy array if we mix types

x = x + m #np.array([2, 4, 6, 8, 10, 12])

Key Concepts – Arrays of data

27

● Numpy arrays similar to MATLAB, Fortran, C++ std::array, R & (Java?)

import numpy as np

x = np.array([1,2,3])

● Numpy arrays have methods for statistical operations

x.mean() (Note np.mean(x) equivalent)

x.std() (Also np.std(x))

● While Numpy itself has a range of functions

np.median(x) Out: 5.0 (But x.median doesn't work!!)

np.gradient(x) Out: Numerical diff xi+1 – xi (No x.gradient either)

● As with other objects, it pays to type ”x.” or ”np.” and use tab to see

what is available, e.g.

newx = x.copy() #Creates a copy of the array

Methods for Numpy arrays

28

● matplotlib – similar plotting functionality to MATLAB

import matplotlib.pyplot as plt

x = np.array([0,1,1,2,3,5,8,13])

plt.plot(x)

plt.show()

#Or plt.savefig("out.png")

Importing Numerical and Plotting Libraries

Use tab in ipython to see what is available (or look online)

We need the pyplot submodule of
matplotlib for most things. Dot uses

plot/show from matplotlib.pyplot

29

#python

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(0, 2*np.pi, 100)

y = np.sin(x)

z = np.cos(x)

plt.plot(x, y)

plt.plot(x, z)

plt.show() #Or plt.savefig("out.png")

An Example plot

30

An Example plotting a histogram

import numpy as np

import matplotlib.pyplot as plt

#10,000 Uniform random numbers

x = np.random.random(10000)

#10,000 Normally distributed random numbers

y = np.random.randn(10000)

#Plot both on a histogram with 50 bins

plt.hist(y, 50)

plt.hist(x, 50)

plt.show() #Or plt.savefig("out.png")

31

● Python Lists of lists seem similar to matrices.They are not!

m = [[1,2,3],[4,5,6],[7,8,9]]

m[0][1] Out: 2

m[1][2] Out: 6

Lists vs Numpy Arrays

m =

32

● Python Lists of lists seem similar to matrices.They are not!

m = [[1,2,3],[4,5,6],[7,8,9]]

m[0][1] Out: 2

m[1][2] Out: 6

Lists vs Numpy Arrays

m =

33

● Python Lists of lists seem similar to matrices.They are not!

m = [[1,2,3],[4,5,6],[7,8,9]]

m[0][1] Out: 2

m[1][2] Out: 6

● For numerics, use Numpy arrays which are contigous memory
implemented in c (more efficient) and work like matrices

import numpy as np

x = np.array([[1,2,3],[4,5,6],[7,8,9]])

Lists vs Numpy Arrays

[1, 2, 3]

[4, 5, 6]

7, 8, 9]

1

1 2 3

1

4 5 6

1

7 8 9

m =

34

● Numpy arrays similar to MATLAB, Fortran, C++ std::array, R & (Java?)

import numpy as np

x = np.array([[1,2,3],[4,5,6],[7,8,9]])

for i in range(x.shape[0]):

 for j in range(x.shape[1]):

 print(i, j, x[i,j])

print(x[:,0]) #Out: Array([1, 4, 7])

print(x[1,:]) #Out: Array([4, 5, 6])

Array slicing

Method to get shape.
returns 2 elements for a 2D
array, accessed by index

35

● Numpy has a number of array operations. As it is written in c, it is
faster to perform operations with numpy instead of loops

import numpy as np

x = np.array([[1,2,3],[4,5,6],[7,8,9]])

y = x * 2 #Array operations

x.T #Transpose array

x * y #Elementwise (eqiv to MATLAB x .* y)

np.dot(x,y) #Matrix multiply

Invert matrix using linera algebra submodule of numpy

invy = np.linalg.inv(y)

● Numpy also has a np.matrix type which are for a special 2D version
of Numpy arrays and provides options for linear algebra

Using Numpy arrays as Matrices

36

An Example plotting a 2D Array (matrix)

import numpy as np

import matplotlib.pyplot as plt

N = 100

x = np.linspace(0,2*np.pi,N)

y = np.sin(x); z = np.cos(x)

#Create 2D field from outer product of previous 1D functions

noise = np.random.random(N**2)

u = np.outer(y,z) + noise.reshape(N,N)

plt.contourf(u, 40, cmap=plt.cm.RdYlBu_r)

plt.colorbar()

plt.show() #Or plt.savefig("out.png")

Don't use Jet
colormap

Creates a 2D array
from two 1D arrays

Reshape an N**2 1D
array into N by N 2D
array

37

• Introduction
1) Create a numpy array x=np.array([1,4,7]). Get the mean and standard

deviation. Add one to each value in the array and get the new mean and
standard deviation.

2) Create array x = np.array([[1,2,3],[4,5,6],[7,8,9]]), use array slicing
to get array([1, 2, 3]) and array([2, 5, 8]) and add them together.

3) Setup a 3 by 3 identity matrix ”I” (ones on the diagonal, zeros off diagonal).
Create a 3 by 3 array of random numbers r. Check np.dot(I,r) is as expected

4) Plot a tanh function in the range -2 p to 2 pi using linspace and matplotlib plot.

5) Create a 1D array of 10,000 normally distributed random numbers t. Plot as a
time history and zoom in to see the detail.

6) Plot a histrogram of the array t from question 4) with 50 bins.

7) Convert array t to a 2D array using field=t.reshape(100,100) and plot using
contour.

Hands on session 2

38

Loading data
from Files

and Plotting

11:45am

39

● Use with statement to ensure file is closed

#Get data from file

with open('./file.csv') as f:

 filestr = f.read() #File is closed on leaving 'with' scope

We Covered Reading Strings from Files Yesterday

x, y
1.0, 1.0
2.0, 4.0
3.0, 9.0
4.0, 16.0
5.0, 25.0
6.0, 36.0

file.csv

40

● Use with statement to ensure file is closed

#Get data from file

with open('./file.csv') as f:

 filestr = f.read() #File is closed on leaving 'with' scope

#Split into list using new line character ”\n”

lines=filestr.split("\n")

data = []

for line in lines[1:]:

 data.append(line.split(","))

What now? Lists of lists with strings...

plt.plot(data) will not work

We Covered Reading Strings from Files Yesterday

x, y
1.0, 1.0
2.0, 4.0
3.0, 9.0
4.0, 16.0
5.0, 25.0
6.0, 36.0

file.csv

41

An Plot Example Using Data from a csv File

import numpy as np

import matplotlib.pyplot as plt

#Read data from comma seperated variable file

data = np.genfromtxt("./file.csv", delimiter=',')

#Store columns as new variables x and y

x = data[:,0]

y = data[:,1]

plt.plot(x, y, "-or")

plt.show()

file.csv
x, y
1.0, 1.0
2.0, 4.0
3.0, 9.0
4.0, 16.0
5.0, 25.0
6.0, 36.0

MATLAB syntax for plot
line (-), point (o) in red (r)

42

An Example using data from a csv file + function

import numpy as np

import matplotlib.pyplot as plt

def read_file(filename):

 data = np.genfromtxt(filename, delimiter=',')

 x = data[:,0]; y = data[:,1]

 return x, y

for filename in ["sqr.csv", "cube.csv"]:

 x, y = read_file(filename)

 plt.plot(x, y, "-o")

plt.show()

sqr.csv
x, y
1.0, 1.0
2.0, 4.0
3.0, 9.0
4.0, 16.0
5.0, 25.0
6.0, 36.0

cube.csv
x, y
1.0, 1.0
2.0, 8.0
3.0, 27.0
4.0, 64.0
5.0, 125.0
6.0, 216.0

43

● Reading Binary Format data

Numpy helper function to read binary

f = "./binary/filename00001"

data = np.fromfile(open(f ,'rb'), dtype='d')

Reading Data from a Binary File

Read binary flag Assume data is
all double
precision format

44

Reading files in other popular formats HDF5 or vtk

● Reading open-source HDF5 format (large binary data, self
documenting) using python package h5py

import h5py
f = h5py.File(fpath,'r')
data = f[u'data'].items()[0][1]

● Another common format is vtk, open-source for 3D graphics
visualization but I've had limited success reading: packages like vtk,
pyvtk, mayavi/TVTK,

import vtk
reader = vtk.vtkUnstructuredGridReader()
reader.SetFileName(filename)
reader.ReadAllVectorsOn()
reader.ReadAllScalarsOn()
reader.Update()

45

Fasta data

>first sequence record
TACGAGAATAATTTCTCATCATCCAGCTTTAACACAAAATTCGCA

 >second sequence record
CAGTTTTCGTTAAGAGAACTTAACATTTTCTTATGACGTAAATGA
AGTTTATATATAAATTTCCTTTTTATTGGA

 >third sequence record
GAACTTAACATTTTCTTATGACGTAAATGAAGTTTATATATAAATTTCCTTTTTATTGGA
TAATATGCCTATGCCGCATAATTTTTATATCTTTCTCCTAACAAAACATTCGCTTGTAAA

“>” denotes records

Empty line between records

Records have
variable line length
and sometimes
newline in the record

46

Fasta data

#Read data into a string
with open('fasta_file') as f:

strs = f.read()
#Split into records assuming empty line between
records = strs.split("\n\n")
#Loop through records to get Dictionary, taking first
line of record as key and second line as value
d = {}
for r in records:
 indx = r.find("\n")
 value=r[indx+1:].replace("\n","")
 key = r[:indx].replace(">","")
 d[key] = value

Use BioPython
from Bio import SeqIO
SeqIO.parse('fasta_file'

 , 'fasta')

>first sequence record

TACGAGAATAATTTCTCATCATCCAGCTTTAACACAAAATTCGCA

 >second sequence record

CAGTTTTCGTTAAGAGAACTTAACATTTTCTTATGACGTAAATGA

AGTTTATATATAAATTTCCTTTTTATTGGA

 >third sequence record

GAACTTAACATTTTCTTATGACGTAAATGAAGTTTATATATAAATTTCCTTTTTATTGGA

TAATATGCCTATGCCGCATAATTTTTATATCTTTCTCCTAACAAAACATTCGCTTGTAAA

47

An Example using data from a spreadsheet

import numpy as np

#Save data from spreadsheet into comma seperate file

data = np.genfromtxt("./sample_spreadsheet.csv", delimiter=',')

data = array([[nan, nan, nan],
 [nan, 27., 78.],
 [nan, 41., 95.],
 [nan, 22., 55.],
 [nan, 50., 104.],
 [nan, 45., 82.],
 [nan, 37., 140.],
 [nan, 84., 50.]])

48

An Example using data from a spreadsheet

import numpy as np

import matplotlib.pyplot as plt

#Save data from spreadsheet into comma seperate file

data = np.genfromtxt("./sample_spreadsheet.csv", delimiter=',')

#Plot data using array slicing

plt.plot(data[:,1], data[:,2],'o')

plt.show()

data[:,1] data[:,2]

data = array([[nan, nan, nan],
 [nan, 27., 78.],
 [nan, 41., 95.],
 [nan, 22., 55.],
 [nan, 50., 104.],
 [nan, 45., 82.],
 [nan, 37., 140.],
 [nan, 84., 50.]])

49

An Example using data from a spreadsheet

import numpy as np

#Save data from spreadsheet into comma seperate file

data = np.genfromtxt("./sample_spreadsheet.csv", delimiter=',',

 names=Truenames=True)

data =
array([(nan, 27.0, 78.0),
 (nan, 41.0, 95.0),
 (nan, 22.0, 55.0),
 (nan, 50.0, 104.0),
 (nan, 45.0, 82.0),
 (nan, 37.0, 140.0),
 (nan, 84.0, 50.0)],
dtype=[('Name', '<f8'),
 ('Age', '<f8'),
 ('Weight', '<f8')]) We can access with data['Age'] like a dictionary

50

An Example using data from a spreadsheet

import numpy as np

import matplotlib.pyplot as plt

#Save data from spreadsheet into comma seperate file

data = np.genfromtxt("./sample_spreadsheet.csv", delimiter=',',

 names=True)

#Plot data using name keywords

plt.plot(data['Age'], data['Weight'], 'o')

plt.show()

51

An Example using data from a spreadsheet

import numpy as np

#Save data from spreadsheet into comma seperate file

data = np.genfromtxt("./sample_spreadsheet.csv", delimiter=',',

 names=True, dtype=objectdtype=object)

data =
array([('Joe Bloggs', '27',
'78'), ('John Dow', '41', '95'),
('Jane Doe', '22', '55'), ('Gary
Jones', '50', '104'),('Michael
Hunt', '45', '82'), ('James
Brown', '37', '140'),('Jessica
Green', '84', '50')],
dtype=[('Name', 'O'),

 ('Age', 'O'),
 ('Weight', 'O')])

52

An Example using data from a spreadsheet

import numpy as np

import matplotlib.pyplot as plt

#Save data from spreadsheet into comma seperate file

data = np.genfromtxt("./sample_spreadsheet.csv", delimiter=',',

 names=True, dtype=object)

#Numpy arrays must all be the same type and currently an array of
objects which we need to convert to allow plotting

plt.plot(data['Age'].astype("float"),

 data['Weight'].astype("float"), 'o')

plt.show()

53

Pandas example with a spreadsheet

import matplotlib.pyplot as plt

import pandas

data = pandas.read_excel("./sample_spreadsheet.xlsx")

#Some example operations

data.boxplot(); plt.show() #Can call inbuilt plots

data.corr() # Look at correlations

data = Name Age Weight
0 Joe Bloggs 27 78
1 John Dow 41 95
2 Jane Doe 22 55
3 Gary Jones 50 104
4 Michael Hunt 45 82
5 James Brown 37 140
6 Jessica Green 84 50

 Age Weight
Age 1.000000 -0.246889
Weight -0.246889 1.000000

Actual
spreadsheet
not csv

54

Save Data in Python's own format using pickle

● Import and save data from Python in any python format

import pickle
a = 4.
s = "test"
l = [2,3,4]
d = {"stuff":2}
pickle.dump([a, s, l, d],open('./out.p','w'))

● Then in a different script or session of Python we can load any of these
types in the right format

import pickle
a, s, l, d = pickle.load(open('./out.p','r'))

55

Hands-On Session 3

Introductory Questions

1) Setup a 2D matrix z = np.array[[1,2,3,4],[1,4,9,16]]. Use array slicing (or a loop) to
get two arrays a=[1,2,3,4] and b=[1,4,9,16] and plot them against each other.

2) Create a csv file (using excel or a text editor) to give two columns containing the
data from part 1), read into Python and plot one column against the other

3) Open a spreadsheet (e.g. the sample in the examples folder) using either pandas
or convert to csv and use genfromtxt and plot (e.g. age against weight).

4) Use Pickle to dump list [4,6,7] and string ”hello”. Load in a new script/session

Advanced Question

5) Write a function to read a csv file as a string and convert to numbers stored in a
numpy array. What options do you need to make it more general (e.g. to skip
header lines). Use on question 3) and 4) above.

6) Add names option to take the title on the top column and create a dictionary of
arrays

56

Using Python as glue:
Filesystems, subprocess

and ctype

13:15am

57

Using os.system

● Simple external commands can be called with the os system

import os

os.system("echo 1 > file")

os.mkdir("new_folder")

● Changing directory can also be done with os

import os

cwd = os.getcwd() #Save current directory

os.chdir(”./new_folder”) #Got to new directory

os.system("echo 2 > newfile")

os.chdir(cwd) #Go back to previous directory

58

Manipulating the File System

● Getting all files in a directory can be done with glob (returns a list)

import glob

Get contents of directory ”./” using wildcard *

files = glob.glob("./*")

Then iterate through list of strings

for file in files:

 print(file)

● Copying, moving or deleting files can be done with shutil (cross platform)

import shutil

shutil.copyfile(”path/to/file”, ”new/path”)

shutil.rmtree(”folder/to/remove”)

59

Running Jobs Using Subprocess

● Introduction to syntax to run an executable from within Python, in this
example echo

import subprocess

Call any executable

output = subprocess.check_output("echo 3", shell = True)

Python echo 3

Call external command

3

Passing commands separated by
spaces as a list, e.g.
["echo", "3"]
would work without shell

60

Running Jobs Using Subprocess

● Introduction to syntax to run an executable from within Python, in this
example echo

import subprocess

Call any executable

sp = subprocess.Popen("echo 3 > spfile3", shell = True)

Python echo 3

Call external command
3

spfile3

Needed to interpret shell
command but security risk as any
string command could be run

61

Running Jobs Using Subprocess

● Introduction to syntax to run an executable from within Python, in this
example echo

import subprocess

for i in range(3):

 sp = subprocess.Popen("echo " + str(i) + " > spfile"

 + str(i), shell = True)

Python

0

spfile0

echo 0

echo 1

echo 2

1

spfile1

2

spfile2

62

Running C/C++ Using Subprocess

● Introduction to syntax to run an executable
written in c++ and compiled

from subprocess import Popen, PIPE
Call C++ executable ./a.out
sp = Popen(['./a.out'], shell=True,
 stdout=PIPE, stdin=PIPE)
test value of 5
value = 5
Pass to program by standard in
sp.stdin.write(str(value) + '\n')
sp.stdin.flush()
Get result back from standard out
result = sp.stdout.readline().strip()
print(result)

a.out compiled using:
g++ test.cpp

//test.cpp code to add
//1 to input and print

#include <iostream>
using namespace std;

int add_one(int i)
{
 return i+1;
}

int main () {

 int i;
 cin >> i;
 i = add_one(i);
 cout << i << "\n";
}

Python a.out

63

Combining Commands

We can automate a wide range of task with these techniques

– Move to a directory somewhere

fdir = "C:/dir/" + "path/to/runs/"

– Download a software file from a website and unzip using Python
tarfile/gunzip libraries or os.system/subprocess

os.system("wget http://www.somefile.com") or os.system("git clone ...")

– Build software, use error handling

– Copy a snapshot of the src code
and all input files to run directory

– Run a parameter sweep by
tweaking input files with Python

– Summarise and plot results

try:

 subprocess.check_output("configure")

 subprocess.check_output("make")

except subprocess.CalledProcessError as e:

 print(e.output)

http://www.somefile/

64

Discussion of Wrapping Code with ctypes

Compile to shared library with: g++ -shared -o testlib.so -fPIC test.cpp

● Creates an interface for your C or C++ function

extern "C" int add_one(int i)
{
 return i+1;

}

● Python code to use this function is then
import numpy.ctypeslib as ctl
import ctypes

libname = 'testlib.so'
libdir = './'
lib=ctl.load_library(libname, libdir)

py_add_one = lib.add_one
py_add_one.argtypes = [ctypes.c_int]
value = 5
results = py_add_one(value)
print(results)

C++

 ctype
integer

 ctype
integer

Python

Functional interfaceFunctional interface

65

Ctypes Example of fast loop

● We can use for a function which would be slow in Python (e.g. check
prime numbers)

def Pyisprime(number):
 if (number < 1):
 return 0
 for i in range(2, int(number**0.5)):
 if number%i == 0:
 return 0
 return 1

● Same function in C with the same interface

extern "C" int isprime(unsigned int number) {
 if (number <= 1) return 0; // zero and one are not prime
 unsigned int i;
 for (i=2; i*i<=number; i++)
 if (number % i == 0) return 0;
 return 1;
} Compile with: g++ -shared -o isprime.so -fPIC isprime.cpp

66

Ctypes Example of fast loop

Compile with: g++ -shared -o isprime.so -fPIC isprime.cpp

● Function in C

extern "C" int isprime(unsigned int number) {
 if (number <= 1) return 0; // zero and one are not prime
 unsigned int i;
 for (i=2; i*i<=number; i++)
 if (number % i == 0) return 0;
 return 1;
}

● Python code to wrape this function
import numpy.ctypeslib as ctl
import ctypes
lib=ctl.load_library("isprime.so", "./")
Cisprime = lib.isprime
Cisprime.argtypes = [ctypes.c_uint]
for i in range(100):
 if Cisprime(i) is 1:
 print(i, " is a prime number")

67

Ctypes Example of fast loop

● We can them compare the two functions over 10,000 loops

import timeit

#Test the C function
start_time = timeit.default_timer()
for i in range(10000):
 isprime(95725787+i)
print("C Times = ", timeit.default_timer() - start_time)

#Test the Python function
start_time = timeit.default_timer()
for i in range(10000):
 Pyisprime(95725787+i)
print("Python Time = ", timeit.default_timer() - start_time)

68

Threading and MPI

● Subprocess can run many jobs
– Can be used to start as many independent jobs

in parallel as you have processor cores
– Independent processes with only shared access

to disk – read/write data to files
– Popen is non-blocking but you can use sp.wait()

● Python does not always use your multi-core
processor efficiently – global interpreter lock (GIL)

● The multiprocessor library can be used to explicitly
divide shared memory jobs (similar to OpenMP)

● Rewriting in C code can also better utilise
resources, Numpy does this

● On distributed memory platforms, MPI can be used
with Python through mpi4py

69

Hands-On Session 4

Introduction

1) Use glob to get files in the current directory, loop through list and print all files.
Create a list of only the python scripts (i.e. files which end with .py).

2) Use os to create a folder and change directory to it. Use a loop to create filesname0
to filename10 (see hands on 3 yesterday) each file containing the number 0 to 10
respectivly (note os.system(”echo 5 > filename5”) creates a 5 in filename5

3) Read the contents of files filename0, …, filename10 either using Python open or
subprocess ("cat filename0" in linux/mac, "type filename10" in windows)

4) Use subprocess instead of os.system in 2), read using 3) and check

Advanced

5) Compile a low level code (C, Fortran or other) and run using subprocess returning
the output to Python

6) Write a simple c function which takes an float, subtracts 1.0 and returns. Write a
ctypes wrapper in Python and call it. What do you notice about duck typing here?

70

More Advanced Plotting

14:15pm

71

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(0, 2*np.pi, 100)

y = np.sin(x)

z = np.cos(x)

fig, ax = plt.subplots(2,1)

ax[0].plot(x, y)

ax[1].plot(x, z)

ax[1].set_xlabel("x axis", fontsize=24)

plt.show()

A Plot of Two Axes

Two subplots, ax is a list of so called axis handles
and we use the plot method of these handles.

ax[0]

ax[1]

72

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(0, 2*np.pi, 20)

y = np.sin(x)

z = np.cos(x)

fig, ax = plt.subplots(2,1)

ax[0].plot(x, y, lw=3., c='r')

ax[1].plot(x, z, '--bs', alpha=0.5)

ax[1].set_xlabel("x", fontsize=24)

ax[0].set_ylabel("$\sin(x)$", fontsize=24)

ax[1].set_ylabel("$\cos(x)$", fontsize=24)

plt.show()

A Plot of Two Axes with Labels and Styles

ax[0]

ax[1]

73

An Example with a legend

import numpy as np

import matplotlib.pyplot as plt

#Get six values as a numpy array

x = np.arange(6)

#Plot with latex syntax

plt.plot(x, x**2, "-o", label="x^2")

plt.plot(x, x**3, "-s", label="x^3")

plt.legend()

plt.show()

74

An Example using time series

import numpy as np

import matplotlib.pyplot as plt

N = 1000000

signal = np.cumsum(np.random.randn(N))

plt.plot(signal); plt.show()

plt.hist(signal, 100); plt.show()

Fs = np.fft.fft(signal)**2

plt.plot(Fs.real[:N/2], ".")

plt.xscale("log"); plt.yscale("log")

plt.show()

75

An Example Plotting a 2D Field (matrix)

import numpy as np

import matplotlib.pyplot as plt

N = 100

x = np.linspace(0,2*np.pi,N)

y = np.sin(x); z = np.cos(x)

#Create 2D field from outer product of previous 1D functions

u = np.outer(y,z) + np.random.random([N,N])

plt.contourf(u, 40, cmap=plt.cm.RdYlBu_r)

plt.colorbar()

plt.show()

Don't use Jet
colormap

76

An Example of Animation

import numpy as np

import matplotlib.pyplot as plt

def get_field(a, N = 100):

 x = a*np.linspace(0,2*np.pi,N)

 y = np.sin(x); z = np.cos(x)

 return np.outer(y,z)

plt.ion(); plt.show() #Interactive plot

for i in np.linspace(0., 5., 200):

 u = get_field(i) #Call function with new i

 plt.contourf(u, 40, cmap=plt.cm.RdYlBu_r)

 plt.pause(0.01) #Pause to allow redraw

 plt.cla() #Clear axis for next plot

77

An Example of making a video

import numpy as np

import matplotlib.pyplot as plt

def get_field(a, N = 100):

 x = a*np.linspace(0,2*np.pi,N)

 y = np.sin(x); z = np.cos(x)

 return np.outer(y,z)

plt.ion(); plt.show() #Interactive plot

for n, i in enumerate(np.linspace(0., 5., 200)):

 u = get_field(i) #Call function with new i

 plt.contourf(u, 40, cmap=plt.cm.RdYlBu_r)

 plt.pause(0.01) #Pause to allow redraw

 plt.savefig("filename{:05}".format(n), bbox_inches="tight")

 plt.cla() #Clear axis for next plot

78

Three dimensional plots in matplotlib vs. mayavi

● Some 3D plotting in matplotlib (but limited)

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = np.linspace(0.,2*np.pi,100)
ax.plot(x, np.cos(x), np.sin(x))
plt.show()

● Generate isosurface data using mayavi (better 3D than matplotlib)
import numpy as np
import mayavi.mlab as mlab
x = np.linspace(-1., 1., 100)
y = x; z = y
[X,Y,Z] = np.meshgrid(x,y,z)
out1 = mlab.contour3d(X**2+Y**2+Z**2,
 contours=[0.8])
mlab.show()

79

Three dimensional plots in mayavi

● Generate isosurface data using mayavi from 3D postproc reader

import mayavi.mlab as mlab

#3D DATA FIELDS LOADED HERE
........................
#3D DATA FIELDS LOADED HERE

for i in range(minrec,maxrec):
 field = pp.get_field(i)
 out1 = mlab.contour3d(field, contours=[0.3])
 mlab.savefig('./surface{:05d}'.format(i)+'.obj')

Object file, a format
recognised by blender

80

Blender python interface

● Use python plugin to import isosurface, set material and save render
import bpy, bmesh
#Blender file saved with correctly setup camera/light source
bpy.ops.wm.open_mainfile('./scene.blend')
for i in range(minrec,maxrec):
 #Load object file from mayavi
 file ='/surface{:05d}'.format(i)
 bpy.ops.import_scene.obj(file+'.obj')
 obj = bpy.context.selected_objects[:][0]
 #Set material and render
 mat = bpy.data.materials['shiny_tranparent']
 obj.data.materials[0] = mat
 bpy.data.scenes['Scene'].render.filepath =file+'.jpg'
 bpy.ops.render.render(write_still=True)
 #Delete last object ready to load next object
 bpy.ops.object.select_all(action='DESELECT')

 bpy.context.scene.objects.active = obj
 obj.select = True
 bpy.ops.object.delete()

81

Blender Videos

82

A GUI with a Slider

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.widgets as mw

#Setup initial plot of sine function
x = np.linspace(0, 2*np.pi, 200)
l, = plt.plot(x, np.sin(x))

#Adjust figure to make room for slider
plt.subplots_adjust(bottom=0.15)
axslide = plt.axes([0.15, 0.05, 0.75, 0.03])
s = mw.Slider(axslide, 'A value', 0., 5.)

#Define function
def update(A):
 l.set_ydata(np.sin(A*x))
 plt.draw()

#Bind update function to change in slider
s.on_changed(update)
plt.show()

Define a function to
change figure based on
slider value. Here this
updates the plot data
and redraws the plot

Bind function update to
slider change

Adjust figure to make
room for the slider and
add a new axis axslide
for the slider to go on

83

Curve Fitting with Scipy

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

x = np.linspace(0, 4., 30)
y = x + (2.*(np.random.random(30)-.5))
plt.plot(x, y, 'ob')

def linear(x, m, c):
 "Define line function"
 return m*x + c

params, cov = curve_fit(linear, x, y)
yf = linear(x, params[0], params[1])
plt.plot(x, yf, 'r-')

plt.show()

Function from scipy.
Takes function handle
for the fit you want
with x and y data. It
returns fit parameters
(here m and c) as a
list with 2 elements
and the covariance (for
goodness of fits, etc)

We use params (m and c)
with the linear
function to plot the
fit

84

Hands-On Session 5

1) Create x=np.linspace(0., 10.,1000) and plot x2 and x3 on axes ax[0] and
ax[1] from plt.subplots(2,1). Change line colour, markers and size

2) Change the y axes on 1) to logarithmic and label the x and y axes
3) Create 2D data from 1D arrays y and z using x=np.outer(y,z) and plot

using imshow, contouf or pcolormesh (try different 1D arrays)
4) Fit an appropriate line to

x = np.linspace(0, 2*np.pi, 100) and
y =np.sin(x) + (2.*(np.random.random(100)-.5))

Advanced
5) Create fig, ax = plt.subplots(1,1), switch interactive mode on and plot

ax.plot(np.sin(A*x)) for A in np.linspace(-5,5,100) using plt.pause(0.1) to
redraw and plt.cla() to clear the axis (NOTE WON'T WORK IN NOTEBOOK
AND WILL NEED TO SAVE FILES IN PYTHONANYWHERE)

6) Run the slider example and adapt to plot sin(Ax2) using function from
number, num.square, with the value of A specified by the slider value.

7) Develop a slider example with both sine and cosine on the plot updated
by slider. Adapt this to add a new slider for a second coefficient B for
cos(Bx).

85

A Complete
Post-Processing

 Example

15:00pm

86

A Typical Postprocessing Workflow

● Get data from some source: experiments, numerical simulation,
surveys/studies, an internet database, etc.

● Import it into python as a single numpy array, a list of numpy
arrays, a dictionary of values, etc.

● Play around with various plots and data analysis techniques.

● Take the most promising output and save the script which
generates this exactly, add labels and format to publication quality.

● We can develop an automated process from data to figure with
minimimal user input. This is useful because

– Easy to make changes when required by reviewers
– Clearer mapping from data to output (opendata movement)
– Create functions to break the analysis down and reduce errors
– You can use the same scripts to analyse similar data

87

A Practical Example of Plotting

We have multiple 2D images stored in files with a header file

88

A Practical Example of Plotting

We have 2D data in multiple files with header (meta-data). We want

1)1) A function to read the header file and store parametersA function to read the header file and store parameters

header file

Nx 84
Nz 50
Lx 1560.41523408474
Lz 1069.90830902657
Nrecs 12

89

● Opening and finding keywords in file

#Find a keyword in file and read numbers to the right

with open('./header') as f:

 for l in f.readlines():

 if l.find("timestep") != -1:

 dt = float(l.strip('timestep'))

 break

● But assumes we know keywords to look for in data

Reading from files

header file

Nx 84
Nz 50
Lx 1560.41523408474
Lz 1069.90830902657
Nrecs 12

90

● Dictonaries are ideal for reading meta-data

header = {}

f = open('./header')

for l in f.readlines():

 key, value = l.split()

 header[key] = float(value)

Iterate through values saved in header file and print

for key, value in header.items():

 print(key, value)

Reading into Dictionaries

string to
list using
spaces
between
words

header file

Nx 84
Nz 50
Lx 1560.41523408474
Lz 1069.90830902657
Nrecs 12

91

Data is a mix of integers and floats, we can use error handling to get type

header = {}

f = open('./header')

for l in f.readlines():

 key, value = l.split()

 try:

 header[key] = int(value)

 except ValueError:

 header[key] = float(value)

Reading into Dictionaries

string to
list using
spaces
between
words

header file

Nx 84
Nz 50
Lx 1560.41523408474
Lz 1069.90830902657
Nrecs 12

92

A Practical Example of Plotting

We have 2D data in multiple files with header (meta-data). We want

1) A function to read the header file and store parameters

2)2) A function to get the list of data files in the folderA function to get the list of data files in the folder

for i in range(10):
 print("filename0000"
 + str(i))

"filename00000"

"filename00001"

"filename00002"

"filename00003"

"filename00004"

 ………

93

● Write a loop to print 10 strings with names: "filename0", "filename1",
… "filename9" (note str(i) converts an int to a string)

for i in range(10):

 print("filename0000" + str(i))

● More useful is the format method, with prepended zeros, so files are in
displayed in order in folder (and read in order):

for i in range(13):

 print("filename{:05}".format(i))

● Get contents of all folder with same name

import glob

for i in glob.glob("filename*"):

 print(i)

Get All Files in Folder

94

A Practical Example of Plotting

We have 2D data in multiple files with header (meta-data). We want

1) A function to read the header file and store parameters

2) A function to get the list of data files in the folder

3)3) A function to read dataA function to read data

1.025468
2.0198
-3.2471
….

The data in
each file is
4200 floats
describing a
84 by 50
 2D field

95

Three Sample Datatypes

● Choice of three formats of data for hands on exercise (or use your own)

– Column - with a seperate header file

– Binary - with seperate header (May not work for you, see Endianness)

– Text - with included header file and other fields

1.025468
2.0198
-3.2471
….

The data in
each file is
4200 floats
describing a
84 by 50
 2D field

96

● Reading data stored as a single column

Numpy function to read column data

f = "./column/filename00001"

data = np.genfromtxt(f)

field = data.reshape(84, 50)

Reading 2D Data from a Column

Reorder to 2D
based on Nx
and Nz value.
We can get this
from the header
file

header file

Nx 84
Nz 50
Lx 1560.41523408474
Lz 1069.90830902657
Nrecs 12

97

● Reading Binary Format data

Numpy helper function to read binary

f = "./binary/filename00001"

data = np.fromfile(open(f ,'rb'), dtype='d')

field = data.reshape(84, 50)

Reading 2D Data from a Binary File

Read binary flag

header file

Nx 84
Nz 50
Lx 1560.41523408474
Lz 1069.90830902657
Nrecs 12

98

/*--------------------------------*- C++ -*----------------------------------*|
========= | |
\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\ / O peration	Version: 3.0.1
\ / A nd	Web: www.OpenFOAM.org
\/ M anipulation	NOTE - THIS IS A FAKE FILE FOR PYTHON TEACHING
---/
FoamFile
{
 Nx 84;
 Nz 50;
 Lx 1560.41523408474;
 Lz 1069.90830902657;
 Nrecs 12
}
// * //

dimensions [0 3 -1 0 0 0 0];

internalField nonuniform List<scalar>
4200
(
-0.0310257085323
-0.0625208281593
-0.0440674291947
-0.0861137703399
-0.121452257294
-0.11521608636

Reading 2D Data from a Formatted Output File

84 times 50 = 4200 records
between brackets

Header
information in file

99

Develop Three Functions to Postprocess

import matplotlib.pyplot as plt

.. FUNCTIONS DEFINED HERE ..

1) read_header, 2) get_files and 3) read_file

foldername = './column/'

header = read_headerread_header(foldername+'header')

files = get_filesget_files(foldername, filename='filename')

for f in files:

 data = read_fileread_file(f)

 field = data.reshape(header['Nx'],header['Nz'])

 plt.imshow(field)

 plt.colorbar()

 plt.show()

100

Develop Three Functions to Postprocess

header = read_headerread_header(foldername+'header')

● Input is the name of the folder which contains the header file

● Code should open the header file, read the data as a string and
convert it so it is stored in a dictionary with variable names
as keys for their associated values

● Required output is this dictionary

files = get_filesget_files(foldername, filename='filename')

● Input is the foldername and basename of the files (in out case
all files are of the form filename00000, filename00001, etc

● Required output is a list of files

data = read_fileread_file(f)

● Input is a single filename to be read

● Output is the content of the file, 4200 floats, as a numpy array

101

Hands-On Session 6

This hands on session is open-ended. The aim is to write three functions that can
read text based meta-data from a file (header), identify a list of files to be read and
then read that data and plot. Please work on your own examples if you'd prefer

1) Choose an input type from 2D_data folder

column easy

binary intermediate

text is complex

2) Write a function read_file with inputs foldername and filename which returns all data.
Check data using plt.imshow(data.reshape(84,50))

3) Write a function get_header which has input of the header file into a dictionary

4) Write a function get_files to get a list of all 13 files containing filenames.000* in a
given directory

102

Solution

import matplotlib.pyplot as plt

.. FUNCTIONS DEFINED HERE ..

1) read_header, 2) get_files and 3) read_file

foldername = './column/'

header = read_headerread_header(foldername+'header')

files = get_filesget_files(foldername, filename='filename')

for f in files:

 data = read_fileread_file(f)

 field = data.reshape(header['Nx'],header['Nz'])

 plt.imshow(field)

 plt.colorbar()

 plt.show()

103

Best Practice in
Designing a

Python Project

15:45pm

104

Evolutions of a Python Project

● Python session to try things, copy to a simple script and test

● Group repeated code into functions to avoid repetition:

– Reduces potential errors as less code to check

– Improves readability as clear modular parts which can be tested

– Easier to maintain and less to change as design evolves

● Collect together similar functions in a module

● Group functions acting on an object into a class for that objectGroup functions acting on an object into a class for that object

● Utilise inheritance to further reduce code volume

● Create a package by adding __init__.py file to folder

105

Back to Post-Processing Example

import matplotlib.pyplot as plt

foldername = './column/'

header = read_headerread_header(foldername+'header')

files = get_filesget_files(foldername, filename='filename')

for f in files:

 data = read_fileread_file(f)

 field = data.reshape(header['Nx'],header['Nz'])

 plt.imshow(field)

 plt.colorbar()

 plt.show()

All post processing functions for a
particular foldername, we can
group them in a class

106

Classes for Post-Processing

● We can use classes with the data reading functions

class postproc():

 def __init__(self, foldername, headername, filename):

 self.foldername = foldername

 self.headername = headername

 self.filename = filename

 def get_header(self):

 f = open(self.foldername+self.headername)

 ...

 def get_files(self):

 ...

107

Classes for Post-Processing

● We can use classes with the data reading functions

class postproc():

 def __init__(self, foldername, headername, filename):

 self.foldername = foldername

 self.headername = headername

 self.filename = filename

 self.header = self.read_header()

 self.files = self.get_files()

 def get_header(self):

 f = open(self.foldername+self.headername)

 ...

 def get_files(self):

108

Classes for Post-Processing

● We can then use this as follows to get and plot data

pp = postproc(foldername='./binary/',

 headername='header',

 filename='filename')

for f in pp.files:

 data = pp.read_file(f)

 field = data.reshape(pp.header['Nx'],pp.header['Nz'])

 plt.imshow(field)

 plt.colorbar()

 plt.show()

Constructor:
Gets all possible files in folder
Reads all header information

Reader:
Load data as needed

109

Classes for Post-Processing

● We can then use this as follows to get and plot data

pp = postproc(foldername='./binary/',

 headername='header',

 filename='filename')

for f in in range(pp.get_Nrecs()):

 f = pp.read_field(i)

 plt.imshow(field)

 plt.colorbar()

 plt.show()
Constructor:

Gets all possible files in folder
Reads all header information

Reader:
Load data as needed

read_field

> Loads data using pp.read_file(f)

> Converts to 2D field with
data.reshape(pp.header['Nx'],
pp.header['Nz'])

110

Inheritance in Python

● A person can train in a particular area and gain specialist skills

class Person():

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def say_name(self):

 print("Hello, I'm "

 + self.name)

bob = Artist('Bob Jones', 24)

jane = Scientist('Jane Bones', 32)

bob.say_name(); bob.do_art()

jane.say_name(); jane.do_science()

class Scientist(PersonPerson):
 def do_science(self):
 print(self.name +

 'is researching')

class Artist(PersonPerson):
 def do_art(self):
 print(self.name +

 'is painting')

111

A Hierarchy of Classes for Post-Processing

class postproc():

 …

 def read_file(self, filename):

 raise NotImplemented

 …

The base class defines the
constructor, get_files, etc but
does not specify how to
read_files as this is unique
to each data type

112

A Hierarchy of Classes for Postprocessing

class postproc():

 …

 def read_file(self, filename):

 raise NotImplemented

 …

#Binary IS A type of postproc reader

class postproc_binary(postprocpostproc):

 def read_file(self, filename):

 return np.fromfile(open(filename,'rb'), dtype='d')

class postproc_column(postprocpostproc):

 def read_file(self, filename):

 return np.genfromtxt(filename)

The base class defines the
constructor, get_files, etc but
does not specify how to
read_files as this is unique
to each data type

Inherit and only need
to define read_file to
customise for each
data type

Text is a little more
complex.... We need to
redefine read_header
as well

113

A Hierarchy of Classes for Post-Processing

● We can now plot any format of data

import postproclib as ppl

ds= "binary"

if ds is "text":

 pp = ppl.postproc_textpostproc_text(ds+'/', 'filename00000', 'filename')

elif ds is "column":

 pp = ppl.postproc_columnpostproc_column(ds+'/', 'header', 'filename')

elif ds is "binary":

 pp = ppl.postproc_binarypostproc_binary(ds+'/', 'header', 'filename')

print("Datasource is " + ds)

for i in range(pp.get_Nrecs()):

 f = pp.read_field(i)

 plt.imshow(f)

 plt.colorbar()

 plt.show()

Interface is the same
for all objects so the
plot code does not
need to be changed

114

Binary
0100010
1010101
0101011

Raw Data Reader

Data Formatter

Collect All Data

User Interface

Separate Data Reader Formatter and Plotter

Column
1.011536
2.432536
-12.4356

Text
'KeyWord
{
1.2, 3.4, 5.2
}

115

Using Postproc Library with a Slider

import matplotlib.pyplot as plt
from matplotlib.widgets import
Slider
import postprocmod as ppl
#function which loads new
#record based on input
def update(i):
 print("record = ", int(i))
 field = pp.read_field(int(i))
 cm.set_array(field.ravel())
 plt.draw()
#Get postproc object and plot
initrec = 0
pp = ppl.postproc('./binary/',
 'header', 'filename')
field = pp.read_field(initrec)
cm = plt.pcolormesh(field)
plt.axis("tight")

#Adjust figure to make room
for slider and add an axis
plt.subplots_adjust(bottom=0.2)
axslide = plt.axes(
 [0.15, 0.1, 0.75, 0.03])

#Bind update function
#to change in slider
s = Slider(axslide, 'Record',
 0, pp.get_Nrecs()-0.1,
 valinit=initrec)
s.on_changed(update)
plt.show()

116

A Similar Approach can Run Jobs Using Subprocess

● Use with class to wrap the build, setup, run and postprocess jobs

class Run():
 def __init__(self, rundir, srcdir):
 self.rd=rundir
 self.sd=srcdir
 def setup(self):
 #Create a copy of source code and compile
 shutil.copytree(self.sd, self.rd)
 subprocess.Popen("g++ " + self.rd + "test.cpp")
 def run(self):
 self.sp = subprocess.Popen(self.rd + "./a.out")
 def finish(self):
 files = pp.read_files(self.rd)
 for f in files:
 ...

Run object uses the
post processing object

117

How I use Python in my Work

GUI
Output

Batch
Running

Framework

Post
Processing

User

Average
Figure
Per Run

GUI
Input

Pre
Processing

Subversion/git
Checkout

Automated
Testing

Automated
Build

Fortran/MPI
Code

Input
File

Output
Files

118

Evolutions of a Python Project

● Python session to try things, copy to a simple script and test

● Group repeated code into functions to avoid repetition:

– Reduces potential errors as less code to check

– Improves readability as clear modular parts which can be tested

– Easier to maintain and less to change as design evolves

● Collect together similar functions in a module

● Group functions acting on an object into a class for that object

● Utilise inheritance to further reduce code volume

● Create a package by adding __init__.py file to folder

119

Evolutions of a Python Project (Test Driven Development)

● Work out what you want the software to do

● Write tests first to define this desired functionality – Test Driven
Development (TDD)

● Develop functions to pass these test scripts

● Collect together similar functions in a module

● Seperate tests into a suite – run test every time you make a
change, or better still add to a continous intergration (CI) server

● Create a package by adding __init__.py file to folder

● Optionally refactor into a class and utilise inheritance to further
reduce code volume (Design patterns may allow you to start OO)

120

The Function Interface

● The inputs to a function and returned output are like a contract with
the user, 'give me this and I will give you that'

– All three exercises returned the same data from different files

– This means the same top level code could be used for any of
the three data formats

– This hides the form of the underlying data from the user, you
only need to call read(filename) to get the data

● When releasing software, version number systems are based
around this

– From v1.0 to v1.1 the interface stays the same

– If major number changes, e.g. v1.1 to v2.0, the interface has
changed and is no longer backward compatible

121

Functional Interface

● Functions are like a contract with the user, here we take in
the file name and return the data from the file

#Iterate through the files

for f in files:

 #read the data

 data = read_file(f)

TAKES A FILENAME AND RETURNS ITS CONTENTS

● We aim to design them so for a given input we get back
the expected output

def square(a):

 return a**2

TAKES A NUMBER AND RETURNS ITS SQUARE

122

Unit Testing and TDD in Python

import unittest

def square(a):

 pass

class test_square(unittest.TestCase):

 def test_float(self):

 self.assertEqual(square(2.), 4.)

 def test_int(self):

 self.assertEqual(square(2), 4)

unittest.main(argv=['first-arg-is-ignored'], exit=False)

Assert raises an error if
the logical statement is
not true

Function initial empty
and written to satisfy
required functionality

Required format for
unittest (we'll review
classes again soon)

NOTE – Need arg-is-ignored to void an error in jupyter notebooks

123

Unit Testing and TDD in Python

import unittest

def square(a):

 return a**2

class test_square(unittest.TestCase):

 def test_float(self):

 self.assertEqual(square(2.), 4.)

 def test_int(self):

 self.assertEqual(square(2), 4)

unittest.main(argv=['first-arg-is-ignored'], exit=False)

Write a function
which passes both
tests

NOTE – Need arg-is-ignored to void an error in jupyter notebooks

124

Unit Testing an Object

import unittest

class Number():

 def __init__(self, a):

 self.a = a

 def square(self):

 pass

 def cube(self):

 pass

Class methods empty
and must be written to
pass tests

Desired class functionality is DEFINED by the tests

class test_number(unittest.TestCase):

 def test_float(self):

 n = Number(2.)

 self.assertEqual(n.square(), 4.)

 self.assertEqual(n.cube(), 8.)

 def test_int(self):

 n = Number(2)

 self.assertEqual(n.square(), 4)

 self.assertEqual(n.cube(), 8)

unittest.main(argv=['first-arg-is-ignored'],

 exit=False)

125

Unit Testing an Object

import unittest

class Number():

 def __init__(self, a):

 self.a = a

 def square(self):

 return self.a**2

 def cube(self):

 return self.a**3

class test_number(unittest.TestCase):

 def test_float(self):

 n = Number(2.)

 self.assertEqual(n.square(), 4.)

 self.assertEqual(n.cube(), 8.)

 def test_int(self):

 n = Number(2)

 self.assertEqual(n.square(), 4)

 self.assertEqual(n.cube(), 8)

unittest.main(argv=['first-arg-is-ignored'],

 exit=False)

Desired class functionality is DEFINED by the tests

Class methods written in
order to satisfy required
functionality

126

Version Control

● Once you have some code, put it into a code repository

– Backup in case you lose you computer

– Access to code from home, work and anywhere else.

– Allows you to keep a clear history of code changes

– Only reasonable option when working together on a code

● Three main repositories are git, mercurial and subversion.

● Most common is git, a steep learing curve and helps the maintainer
more than the developer (in my opinion). Mercurial may be better...
Subversion is often disregarded due to centralised model.

● Range of free services for hosting, Imperial has a paid github account
https://github.com/ so you can host close source projects

https://github.com/

127

Automated Testing

● Travis CI – you write a script and your tests are run automatically. If
your latest change breaks the test, you will get an email

os: linux
language: python
python:
 - 2.7
 - 3.6
script:
 - make test

● Or setup your own local solution using Python scripts

● Start your test suite now! It will improve your software
development

128

Sample Project Online

129

Hands-On Session 7

Introduction
1) Use test driven development (i.e. write the tests first) to design functions which

returns the square and the cube of input values in a file called numbers.py.
2) Refactor numbers.py to a class with constructor to take input a, stores it as

self.a = a and change the functions square and cube to act on self.a.
3) In numbers.py, add if __name__ == "__main__": and move the tests

inside this. Use import numbers as nb in a new script, instantiate n =
nb.number(5.) and use the n.square() and n.cube() methods.

Advanced
4) Refactor the three functions from the previous hands-on: get_files,

read_header and read_data into a single class postproc. Write a constructor
for the postproc class to take foldername, header and filename and get
self.header and self.files.

5) Try steps 4) to 5) for a different input data format by creating a new class.
Make postproc a base class and using Python inheritance syntax, e.g. class
postproc_binary(postproc):, create a range of different data readers

130

What to do next?

● Find a project

● Use Python instead of your desktop calculator

● Ideally something at work and outside

● Use search engines for help, Python is ubiquitous - often you can find
sample code and tutorials for exactly your problem

● Stackoverflow is usually the best source of explanation

● Official documentation is okay as a reference but not introductory,
look for many excellent tutorials, guides and videos

● help(function) in python. Tab, ? or ?? in ipython

● Be prepared for initial frustration!

● Worth the effort to learn

131

What to do next?

● If we didn't cover something you needed for your work, please ask. I
will also send notes to everyone who signed up.

● Please provide feedback on today

● Was the course useful? What could be improved?

● I believe Python should be taught at undergraduate level here at
Imperial. Please support this by filling in the questionnaire, I will
present the results on Wednesday HPC session (10 – 12 tomorrow)

Or Link can be found here:

http://cpl-library.org/python_feedback.shtml

http://bit.ly/2yf1vka

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131

